YOLO算法检测模型训练参数大合集!!再也不用看不懂超参啦!

本文主要是介绍YOLO算法检测模型训练参数大合集!!再也不用看不懂超参啦!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参数默认值描述
modelNone指定用于训练的模型文件。接受预训练模型(.pt 文件)或配置文件(.yaml 文件)的路径。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如,coco8.yaml)。该文件包含特定于数据集的参数,包括训练和验证数据的路径、类名以及类的数量。
epochs100训练的总轮数。每个轮数代表对整个数据集的完整遍历。调整此值会影响训练持续时间和模型性能。
timeNone最大训练时间(以小时为单位)。如果设置,将覆盖 epochs 参数,允许在达到指定持续时间后自动停止训练。对于时间受限的训练场景很有用。
patience100在验证指标没有改善的情况下等待的轮数,之后提前停止训练。当性能稳定时,通过停止训练来防止过拟合。
batch16训练的批处理大小,表示在更新模型的内部参数之前处理的图像数量。AutoBatch(batch=-1)根据 GPU 内存可用性动态调整批处理大小。
imgsz640训练的目标图像大小。所有图像在输入模型之前都将被调整到此维度。影响模型准确度和计算复杂性。
saveTrue启用训练检查点和最终模型权重的保存。对于恢复训练或模型部署很有用。
save_period-1保存模型检查点的频率,以轮数(epochs)为单位。值-1禁用此功能。在长时间的训练过程中,保存中间模型很有用。
cacheFalse启用数据集图像的内存缓存(True/ram)、磁盘缓存(disk)或禁用(False)。通过减少磁盘I/O来提高训练速度,但会增加内存使用。
deviceNone指定用于训练的计算设备:单个GPU(device=0)、多个GPU(device=0,1)、CPU(device=cpu)或Apple Silicon的MPS(device=mps)。
workers8数据加载的工作线程数(如果是多GPU训练,则每个RANK一个)。影响数据预处理和输入模型的速度,在多GPU设置中尤其有用。
projectNone保存训练输出的项目目录名称。允许组织存储不同的实验。
nameNone训练运行的名称。用于在项目文件夹内创建子目录,其中存储训练日志和输出。
exist_okFalse如果为True,则允许覆盖已存在的项目/名称目录。在不需要手动清除先前输出的情况下进行迭代实验时很有用。
pretrainedTrue确定是否从预训练模型开始训练。可以是一个布尔值或特定模型的字符串路径,从中加载权重。提高训练效率和模型性能。
optimizer'auto'训练时优化器的选择。选项包括SGD、Adam、AdamW、NAdam、RAdam、RMSProp等,或'auto'以根据模型配置自动选择。影响收敛速度和稳定性。
verboseFalse启用训练期间的详细输出,提供详细的日志和进度更新。对于调试和密切监控训练过程很有用。
seed0设置训练的随机种子,确保在相同配置下运行的结果可复现。
deterministicTrue强制使用确定性算法,确保可复现性,但可能由于限制非确定性算法而影响性能和速度。
single_clsFalse在训练过程中,将多类数据集中的所有类别视为单个类别。对于二元分类任务或仅关注对象存在性而非分类时很有用。
rectFalse启用矩形训练,优化批次组成以最小化填充。可以提高效率和速度,但可能影响模型准确性。
cos_lrFalse使用余弦学习率调度器,使学习率在训练过程中按余弦曲线进行调整。有助于更好地管理学习率以实现更好的收敛。
close_mosaic10在最后N个轮次中禁用马赛克数据增强,以在训练完成前稳定训练。设置为0将禁用此功能。
resumeFalse从最后保存的检查点恢复训练。自动加载模型权重、优化器状态和轮次计数,无缝继续训练。
ampTrue启用自动混合精度(AMP)训练,减少内存使用,并可能以最小的精度影响加速训练。
fraction1.0指定用于训练的数据集分数。允许在完整数据集的子集上进行训练,对于实验或资源有限时很有用。
profileFalse在训练期间启用ONNX和TensorRT的速度分析,有助于优化模型部署。
freezeNone冻结模型的前N层或按索引指定的层,减少可训练参数的数量。对于微调或迁移学习很有用。
lr00.01初始学习率(例如,SGD=1E-2, Adam=1E-3)。调整此值对优化过程至关重要,影响模型权重更新的速度。
lrf0.01最终学习率作为初始学习率的分数 = (lr0 * lrf),与学习率调度器一起使用,随时间调整学习率。
momentum0.937SGD优化器的动量因子或Adam优化器的beta1,影响当前更新中过去梯度的纳入。
weight_decay0.0005L2正则化项,惩罚大权重以防止过拟合。
warmup_epochs3.0学习率预热所需的轮次数,逐渐将学习率从低值增加到初始学习率,以在早期稳定训练。
warmup_momentum0.8预热阶段的初始动量,在预热期间逐渐调整到设定的动量。
warmup_bias_lr0.1预热阶段偏差参数的学习率,有助于在初始轮次中稳定模型训练。
box7.5损失函数中边界框损失组件的权重,影响对准确预测边界框坐标的重视程度。
cls0.5总损失函数中分类损失的权重,影响相对于其他组件正确类别预测的重要性。
dfl1.5分布焦点损失的权重,在某些YOLO版本中用于细粒度分类。
pose12.0在训练用于姿态估计的模型中,姿态损失的权重,影响对姿态关键点的准确预测的重视程度。
kobj2.0在姿态估计模型中,关键点对象性损失的权重,平衡检测置信度与姿态准确性。
label_smoothing0.0应用标签平滑,将硬标签软化为目标标签和标签上的均匀分布的混合,可能提高泛化能力。
nbs64损失归一化的名义批次大小。
overlap_maskTrue确定在训练期间分割掩码是否应该重叠,适用于实例分割任务。
mask_ratio4分割掩码的下采样比率,影响训练期间使用的掩码的分辨率。
dropout0.0分类任务中的正则化dropout率,通过在训练期间随机省略单元来防止过拟合。
valTrue启用训练期间的验证,允许在单独的数据集上定期评估模型性能。
plotsFalse生成并保存训练和验证指标的图表,以及预测示例,为模型性能和学习进度提供视觉洞察。

 

这篇关于YOLO算法检测模型训练参数大合集!!再也不用看不懂超参啦!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011474

相关文章

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.