【深度学习实战—7】:基于Pytorch的多标签图像分类-Fashion-Product-Images

本文主要是介绍【深度学习实战—7】:基于Pytorch的多标签图像分类-Fashion-Product-Images,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✨博客主页:王乐予🎈
✨年轻人要:Living for the moment(活在当下)!💪
🏆推荐专栏:【图像处理】【千锤百炼Python】【深度学习】【排序算法】

目录

  • 😺一、数据集介绍
  • 😺二、工程文件夹目录
  • 😺三、option.py
  • 😺四、split_data.py
  • 😺五、dataset.py
  • 😺六、model.py
  • 😺七、utils.py
  • 😺八、train.py
  • 😺九、predict.py

在图像分类领域,可能会遇到需要确定对象的多个属性的场景。例如,这些可以是类别、颜色、大小等。与通常的图像分类相比,此任务的输出将包含 2 个或更多属性。

在本教程中,我们将重点讨论一个问题,即我们事先知道属性的数量。此类任务称为多输出分类。事实上,这是多标签分类的一种特例,还可以预测多个属性,但它们的数量可能因样本而异。

本文程序已解耦,可当做通用型多标签图像分类框架使用。

数据集下载地址:Fashion-Product-Images

😺一、数据集介绍

我们将使用时尚产品图片数据集。它包含超过 44 000 张衣服和配饰图片,每张图片有 9 个标签。

从 kaggle 上下载到数据集后解压可以一个文件夹和一个csv表格,分别是imagesstyles.csv

其中images里存放了数据集中所有的图片。
在这里插入图片描述
styles.csv中写入了图片的相关信息,包括 id(图片名称)、gender(性别)、masterCategory(主要类别)、subCategory(二级类别)、articleType(服装类型)、baseColour(描述性颜色)、season(季节)、year(年份)、usage(使用说明)、productDisplayName(品牌名称)。
在这里插入图片描述

😺二、工程文件夹目录

工程文件夹目录如下,每个py文件具有不同的功能,这么写的好处是未来修改程序更加方便,而且每个py程序都没有很长。如果全部写到一个py程序里,则会显得很臃肿,修改起来也不轻松。
在这里插入图片描述

对每个文件的解释如下:

  • checkpoints:存放训练的模型权重;
  • datasets:存放数据集。并对数据集划分;
  • logs:存放训练日志。包括训练、验证时候的损失与精度情况;
  • option.py:存放整个工程下需要用到的所有参数;
  • utils.py:存放各种函数。包括模型保存、模型加载和损失函数等;
  • split_data.py:划分数据集;
  • model.py:构建神经网络模型;
  • train.py:训练模型;
  • predict.py:评估训练模型。

😺三、option.py

import argparsedef get_args():parser = argparse.ArgumentParser(description='ALL ARGS')parser.add_argument('--device', type=str, default='cuda', help='cuda or cpu')parser.add_argument('--start_epoch', type=int, default=0, help='start epoch')parser.add_argument('--epochs', type=int, default=100, help='Total Training Times')parser.add_argument('--batch_size', type=int, default=32, help='input batch size')parser.add_argument('--num_workers', type=int, default=0, help='number of processes to handle dataset loading')parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate for adam')parser.add_argument('--datasets_path', type=str, default='./datasets/', help='Path to the dataset')parser.add_argument('--image_path', type=str, default='./datasets/images', help='Path to the style image')parser.add_argument('--original_csv_path', type=str, default='./datasets/styles.csv', help='Original csv file dir')parser.add_argument('--train_csv_path', type=str, default='./datasets/train.csv', help='train csv file dir')parser.add_argument('--val_csv_path', type=str, default='./datasets/val.csv', help='val csv file dir')parser.add_argument('--log_dir', type=str, default='./logs/', help='log dir')parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/', help='checkpoints dir')parser.add_argument('--checkpoint', type=str, default='./checkpoints/2024-05-24_13-50/checkpoint-000002.pth', help='choose a checkpoint to predict')parser.add_argument('--predict_image_path', type=str, default='./datasets/images/1163.jpg', help='show ground truth')return parser.parse_args()

😺四、split_data.py

由于数据集的各个属性严重不均衡,为简单起见,在本教程中仅使用三个标签:gender、articleType 和 baseColour

import csv
import os
import numpy as np
from PIL import Image
from tqdm import tqdm
from option import get_argsdef save_csv(data, path, fieldnames=['image_path', 'gender', 'articleType', 'baseColour']):with open(path, 'w', newline='') as csv_file:writer = csv.DictWriter(csv_file, fieldnames=fieldnames)writer.writeheader()for row in data:writer.writerow(dict(zip(fieldnames, row)))if __name__ == '__main__':args = get_args()input_folder = args.datasets_pathoutput_folder = args.datasets_pathannotation = args.original_csv_pathall_data = []with open(annotation) as csv_file:reader = csv.DictReader(csv_file)for row in tqdm(reader, total=reader.line_num):img_id = row['id']# only three attributes are used: gender articleType、baseColourgender = row['gender']articleType = row['articleType']baseColour = row['baseColour']img_name = os.path.join(input_folder, 'images', str(img_id) + '.jpg')# Determine if the image existsif os.path.exists(img_name):# Check if the image is 80 * 60 size and if it is in RGB formatimg = Image.open(img_name)if img.size == (60, 80) and img.mode == "RGB":all_data.append([img_name, gender, articleType, baseColour])np.random.seed(42)all_data = np.asarray(all_data)# Randomly select 40000 data pointsinds = np.random.choice(40000, 40000, replace=False)# Divide training and validation setssave_csv(all_data[inds][:32000], args.train_csv_path)save_csv(all_data[inds][32000:40000], args.val_csv_path)

😺五、dataset.py

该代码实现了两个类,AttributesDataset用于处理属性标签,FashionDataset类继承自Dataset类,用于处理带有图片路径和属性标签的数据集。关键地方的解释在代码中已经进行了注释。

get_mean_and_std函数用于获取数据集图像的均值与标准差

import csv
import numpy as np
from PIL import Image
import os
from torch.utils.data import Dataset
from torchvision import transforms
from option import get_argsargs = get_args()mean = [0.85418772, 0.83673165, 0.83065592]
std = [0.25331535, 0.26539705, 0.26877365]class AttributesDataset():def __init__(self, annotation_path):color_labels = []gender_labels = []article_labels = []with open(annotation_path) as f:reader = csv.DictReader(f)for row in reader:color_labels.append(row['baseColour'])gender_labels.append(row['gender'])article_labels.append(row['articleType'])# Remove duplicate values to obtain a unique label setself.color_labels = np.unique(color_labels)self.gender_labels = np.unique(gender_labels)self.article_labels = np.unique(article_labels)# Calculate the number of categories for each labelself.num_colors = len(self.color_labels)self.num_genders = len(self.gender_labels)self.num_articles = len(self.article_labels)# Create label mapping: Create two dictionaries: one from label ID to label name, and the other from label name to label ID.# Mapping results:self.gender_name_to_id:{'Boys': 0, 'Girls': 1, 'Men': 2, 'Unisex': 3, 'Women': 4}# Mapping results.gender_id_to_name:{0: 'Boys', 1: 'Girls', 2: 'Men', 3: 'Unisex', 4: 'Women'}self.color_id_to_name = dict(zip(range(len(self.color_labels)), self.color_labels))self.color_name_to_id = dict(zip(self.color_labels, range(len(self.color_labels))))self.gender_id_to_name = dict(zip(range(len(self.gender_labels)), self.gender_labels))self.gender_name_to_id = dict(zip(self.gender_labels, range(len(self.gender_labels))))self.article_id_to_name = dict(zip(range(len(self.article_labels)), self.article_labels))self.article_name_to_id = dict(zip(self.article_labels, range(len(self.article_labels))))class FashionDataset(Dataset):def __init__(self, annotation_path, attributes, transform=None):super().__init__()self.transform = transformself.attr = attributes# Initialize a list to store the image path and corresponding labels of the datasetself.data = []self.color_labels = []self.gender_labels = []self.article_labels = []# Read data from a CSV file and store the image path and corresponding labels in a listwith open(annotation_path) as f:reader = csv.DictReader(f)for row in reader:self.data.append(row['image_path'])self.color_labels.append(self.attr.color_name_to_id[row['baseColour']])self.gender_labels.append(self.attr.gender_name_to_id[row['gender']])self.article_labels.append(self.attr.article_name_to_id[row['articleType']])def __len__(self):return len(self.data)def __getitem__(self, idx):img_path = self.data[idx]img = Image.open(img_path)if self.transform:img = self.transform(img)dict_data = {'img': img,'labels': {'color_labels': self.color_labels[idx],'gender_labels': self.gender_labels[idx],'article_labels': self.article_labels[idx]}}return dict_datatrain_transform = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5),transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0),transforms.ToTensor(),transforms.Normalize(mean, std)])val_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)])# Calculate the mean and variance of all images in the dataset
def get_mean_and_std(image_paths, transform):  # Initialize the accumulator of mean and variancemeans = np.zeros((3,))  stds = np.zeros((3,))  count = 0  for image_path in image_paths:   image = Image.open(image_path).convert('RGB')   image_tensor = transform(image).unsqueeze(0)  image_array = image_tensor.numpy()  # Calculate the mean and variance of the imagebatch_mean = np.mean(image_array, axis=(0, 2, 3))  batch_var = np.var(image_array, axis=(0, 2, 3))  # Accumulate to the totalmeans += batch_mean  stds += batch_var  count += 1  # Calculate the mean and standard deviation of the entire datasetmeans /= count  stds = np.sqrt(stds / count)  return means, stds  # Calculate the mean and variance of the dataset
if __name__ == '__main__':mena_std_transform = transforms.Compose([transforms.ToTensor()])image_path = []for root, _, files in os.walk(args.image_path):for file in files:if os.path.splitext(file)[1].lower() in ('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.gif'):image_path.append(os.path.join(root, file))means, stds = get_mean_and_std(image_path, mena_std_transform)print("Calculated mean and standard deviation:=========>") print("Mean:", means)  print("Std:", stds)

😺六、model.py

该代码用来创建网络模型,需要注意的是最后使用了三个分类头对三个属性进行分类。

import torch
import torch.nn as nn
import torchvision.models as modelsclass MultiOutputModel(nn.Module):def __init__(self, n_color_classes, n_gender_classes, n_article_classes):super().__init__()self.base_model = models.mobilenet_v2().featureslast_channel = models.mobilenet_v2().last_channelself.pool = nn.AdaptiveAvgPool2d((1, 1))# Create three independent classifiers for predicting three categoriesself.color = nn.Sequential(nn.Dropout(p=0.2), nn.Linear(in_features=last_channel, out_features=n_color_classes))self.gender = nn.Sequential(nn.Dropout(p=0.2), nn.Linear(in_features=last_channel, out_features=n_gender_classes))self.article = nn.Sequential(nn.Dropout(p=0.2), nn.Linear(in_features=last_channel, out_features=n_article_classes))def forward(self, x):x = self.base_model(x)x = self.pool(x)x = torch.flatten(x, 1)return {'color': self.color(x),'gender': self.gender(x),'article': self.article(x)}

😺七、utils.py

utils.py中各函数的解释:

  • get_cur_time:获取当前时间。
  • checkpoint_save:保存模型。
  • checkpoint_load:加载模型。
  • get_loss:定义损失函数。
  • calculate_metrics:计算精度。
import os
from datetime import datetime
import warnings
from sklearn.metrics import balanced_accuracy_score
import torch
import torch.nn.functional as F# Get the current date and time and format it as a string
def get_cur_time():return datetime.strftime(datetime.now(), '%Y-%m-%d_%H-%M')def checkpoint_save(model, name, epoch):f = os.path.join(name, 'checkpoint-{:06d}.pth'.format(epoch))torch.save(model, f)print('Saved checkpoint:', f)# Load Checkpoints
def checkpoint_load(model, name):print('Restoring checkpoint: {}'.format(name))model = torch.load(name, map_location='cpu')epoch = int(os.path.splitext(os.path.basename(name))[0].split('-')[1])return model, epochdef get_loss(net_output, ground_truth):color_loss = F.cross_entropy(net_output['color'], ground_truth['color_labels'])gender_loss = F.cross_entropy(net_output['gender'], ground_truth['gender_labels'])article_loss = F.cross_entropy(net_output['article'], ground_truth['article_labels'])loss = color_loss + gender_loss + article_lossreturn loss, {'color': color_loss, 'gender': gender_loss, 'article': article_loss}def calculate_metrics(output, target):_, predicted_color = output['color'].cpu().max(1)gt_color = target['color_labels'].cpu()_, predicted_gender = output['gender'].cpu().max(1)gt_gender = target['gender_labels'].cpu()_, predicted_article = output['article'].cpu().max(1)gt_article = target['article_labels'].cpu()with warnings.catch_warnings():  # sklearn may produce a warning when processing zero row in confusion matrixwarnings.simplefilter("ignore")accuracy_color = balanced_accuracy_score(y_true=gt_color.numpy(), y_pred=predicted_color.numpy())accuracy_gender = balanced_accuracy_score(y_true=gt_gender.numpy(), y_pred=predicted_gender.numpy())accuracy_article = balanced_accuracy_score(y_true=gt_article.numpy(), y_pred=predicted_article.numpy())return accuracy_color, accuracy_gender, accuracy_article

😺八、train.py

该程序用于模型训练。

程序记录了训练日志,可以启动tensorboard观察训练过程(需要改成自己的路径):
tensorboard --logdir=logs/2024-05-24_15-16

程序还添加了学习率衰减的训练策略。

程序使用tqdm库用于在终端可视化训练时间。

# Start Tensorboard:tensorboard --logdir=logs/2024-05-24_15-16
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from dataset import AttributesDataset, FashionDataset, train_transform, val_transform
from model import MultiOutputModel
from utils import get_loss, get_cur_time, checkpoint_save
from predict import calculate_metrics, validate
from option import get_argsargs = get_args()# Initial parameters
start_epoch = args.start_epoch
N_epochs = args.epochs
batch_size = args.batch_size
num_workers = args.num_workers
batch_size = args.batch_size
device = args.device# Initial paths
original_csv_path = args.original_csv_path
train_csv_path = args.train_csv_path
val_csv_path = args.val_csv_path
log_dir = args.log_dir
checkpoint_dir = args.checkpoint_dir# Load attribute classes, The attributes contain labels and mappings for three categories
attributes = AttributesDataset(original_csv_path)# Load Dataset
train_dataset = FashionDataset(train_csv_path, attributes, train_transform)
val_dataset = FashionDataset(val_csv_path, attributes, val_transform)train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)# Load model
model = MultiOutputModel(n_color_classes=attributes.num_colors,n_gender_classes=attributes.num_genders,n_article_classes=attributes.num_articles)
model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
sch = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.9)    # Add learning rate decaylogdir = os.path.join(log_dir, get_cur_time())
savedir = os.path.join(checkpoint_dir, get_cur_time())os.makedirs(logdir, exist_ok=True)
os.makedirs(savedir, exist_ok=True)logger = SummaryWriter(logdir)n_train_samples = len(train_dataloader)if __name__ == '__main__':for epoch in range(start_epoch, N_epochs):# Initialize training loss and accuracy for each categorytotal_loss, color_loss, gender_loss, article_loss = 0, 0, 0, 0accuracy_color, accuracy_gender, accuracy_article = 0, 0, 0# Create a tqdm instance to visualize training progresspbar = tqdm(total=len(train_dataset), desc='Training', unit='img')for batch in train_dataloader:pbar.update(train_dataloader.batch_size)    # Update progress baroptimizer.zero_grad()img = batch['img']target_labels = batch['labels']target_labels = {t: target_labels[t].to(device) for t in target_labels}output = model(img.to(device))# Calculate lossesloss_train, losses_train = get_loss(output, target_labels)total_loss += loss_train.item()color_loss += losses_train['color']gender_loss += losses_train['gender']article_loss += losses_train['article']# Calculation accuracybatch_accuracy_color, batch_accuracy_gender, batch_accuracy_article = calculate_metrics(output, target_labels)accuracy_color += batch_accuracy_coloraccuracy_gender += batch_accuracy_genderaccuracy_article += batch_accuracy_articleloss_train.backward()sch.step()# Print epoch, total loss, loss for each category, accuracy for each categoryprint("epoch {:2d}, total_loss: {:.4f}, color_loss: {:.4f}, gender_loss: {:.4f}, article_loss: {:.4f}, color_acc: {:.4f}, gender_acc: {:.4f}, article_acc: {:.4f}".format(epoch,total_loss / n_train_samples, color_loss / n_train_samples, gender_loss / n_train_samples, article_loss / n_train_samples,accuracy_color / n_train_samples, accuracy_gender / n_train_samples, accuracy_article / n_train_samples))# Loss and accuracy write to logslogger.add_scalar('train_total_loss', total_loss / n_train_samples, epoch)  logger.add_scalar('train_color_loss', color_loss / n_train_samples, epoch)  logger.add_scalar('train_gender_loss', gender_loss / n_train_samples, epoch)  logger.add_scalar('train_article_loss', article_loss / n_train_samples, epoch)  logger.add_scalar('train_color_acc', accuracy_color / n_train_samples, epoch)  logger.add_scalar('train_gender_acc', accuracy_gender / n_train_samples, epoch)  logger.add_scalar('train_article_acc', accuracy_article / n_train_samples, epoch) if epoch % 2 == 0:validate(model=model, dataloader=val_dataloader, logger=logger, iteration=epoch, device=device, checkpoint=None)if epoch % 2 == 0:checkpoint_save(model, savedir, epoch)pbar.close() 

😺九、predict.py

该程序中定义了两个函数:

  • validate用于在训练过程中启动验证。
  • visualize_grid用于对测试集进行评估。

visualize_grid中,添加了三种属性测试结果的混淆矩阵,以及可视化预测结果。
main函数中,需要对测试集进行评估就注释掉Single image testing。反之,如果需要对单张图片测试,需要注释掉Dir testing

from PIL import Image  
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
import torch
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from dataset import FashionDataset, AttributesDataset, mean, std
from model import MultiOutputModel
from utils import get_loss, calculate_metrics, checkpoint_load
from option import get_argsargs = get_args()
batch_size = args.batch_size
num_workers = args.num_workers
device = args.device
original_csv_path = args.original_csv_path
val_csv_path = args.val_csv_path
checkpoint=args.checkpoint
predict_image_path = args.predict_image_pathdef validate(model, dataloader, logger, iteration, device, checkpoint):if checkpoint is not None:checkpoint_load(model, checkpoint)model.eval()with torch.no_grad():# The total loss and accuracy of each category in initializing the validation setavg_loss, accuracy_color, accuracy_gender, accuracy_article = 0, 0, 0, 0for batch in dataloader:img = batch['img']target_labels = batch['labels']target_labels = {t: target_labels[t].to(device) for t in target_labels}output = model(img.to(device))val_train, val_train_losses = get_loss(output, target_labels)avg_loss += val_train.item()batch_accuracy_color, batch_accuracy_gender, batch_accuracy_article = calculate_metrics(output, target_labels)accuracy_color += batch_accuracy_coloraccuracy_gender += batch_accuracy_genderaccuracy_article += batch_accuracy_articlen_samples = len(dataloader)avg_loss /= n_samplesaccuracy_color /= n_samplesaccuracy_gender /= n_samplesaccuracy_article /= n_samplesprint('-' * 80)print("Validation ====> loss: {:.4f}, color_acc: {:.4f}, gender_acc: {:.4f}, article_acc: {:.4f}\n".format(avg_loss, accuracy_color, accuracy_gender, accuracy_article))logger.add_scalar('val_loss', avg_loss, iteration)logger.add_scalar('val_color_acc', accuracy_color, iteration)logger.add_scalar('val_color_acc', accuracy_gender, iteration)logger.add_scalar('val_color_acc', accuracy_article, iteration)model.train()def visualize_grid(model, dataloader, attributes, device, show_cn_matrices=True, show_images=True, checkpoint=None,show_gt=False):if checkpoint is not None:model, _ = checkpoint_load(model, checkpoint)model.eval()# Define image listimgs = []       # Define a list of predicted results (predicted labels, predicted color labels, predicted gender labels, predicted article labels)labels, predicted_color_all, predicted_gender_all, predicted_article_all = [], [], [], []# Define a list of real values (real labels, real color labels, real gender labels, real article labels)gt_labels, gt_color_all, gt_gender_all, gt_article_all = [], [], [], []# Initialize precision for each categoryaccuracy_color = 0accuracy_gender = 0accuracy_article = 0with torch.no_grad():for batch in dataloader:img = batch['img']gt_colors = batch['labels']['color_labels']gt_genders = batch['labels']['gender_labels']gt_articles = batch['labels']['article_labels']output = model(img)batch_accuracy_color, batch_accuracy_gender, batch_accuracy_article = \calculate_metrics(output, batch['labels'])accuracy_color += batch_accuracy_coloraccuracy_gender += batch_accuracy_genderaccuracy_article += batch_accuracy_article# Calculate maximum probability prediction label_, predicted_colors = output['color'].cpu().max(1)_, predicted_genders = output['gender'].cpu().max(1)_, predicted_articles = output['article'].cpu().max(1)for i in range(img.shape[0]):image = np.clip(img[i].permute(1, 2, 0).numpy() * std + mean, 0, 1)predicted_color = attributes.color_id_to_name[predicted_colors[i].item()]predicted_gender = attributes.gender_id_to_name[predicted_genders[i].item()]predicted_article = attributes.article_id_to_name[predicted_articles[i].item()]gt_color = attributes.color_id_to_name[gt_colors[i].item()]gt_gender = attributes.gender_id_to_name[gt_genders[i].item()]gt_article = attributes.article_id_to_name[gt_articles[i].item()]gt_color_all.append(gt_color)gt_gender_all.append(gt_gender)gt_article_all.append(gt_article)predicted_color_all.append(predicted_color)predicted_gender_all.append(predicted_gender)predicted_article_all.append(predicted_article)imgs.append(image)labels.append("{}\n{}\n{}".format(predicted_gender, predicted_article, predicted_color))gt_labels.append("{}\n{}\n{}".format(gt_gender, gt_article, gt_color))if not show_gt:n_samples = len(dataloader)print("Accuracy ====> color: {:.4f}, gender: {:.4f}, article: {:.4f}".format(accuracy_color / n_samples,accuracy_gender / n_samples,accuracy_article / n_samples))# Draw confusion matrixif show_cn_matrices:# Color confusion matrixcn_matrix = confusion_matrix(y_true=gt_color_all,y_pred=predicted_color_all,labels=attributes.color_labels,normalize='true')ConfusionMatrixDisplay(confusion_matrix=cn_matrix, display_labels=attributes.color_labels).plot(include_values=False, xticks_rotation='vertical')plt.title("Colors")plt.tight_layout()plt.savefig("confusion_matrix_color.png")# plt.show()# Gender confusion matrixcn_matrix = confusion_matrix(y_true=gt_gender_all,y_pred=predicted_gender_all,labels=attributes.gender_labels,normalize='true')ConfusionMatrixDisplay(confusion_matrix=cn_matrix, display_labels=attributes.gender_labels).plot(xticks_rotation='horizontal')plt.title("Genders")plt.tight_layout()plt.savefig("confusion_matrix_gender.png")# plt.show()# Article confusion matrix (with too many categories, images may be too large to display fully)cn_matrix = confusion_matrix(y_true=gt_article_all,y_pred=predicted_article_all,labels=attributes.article_labels,normalize='true')plt.rcParams.update({'font.size': 1.8})plt.rcParams.update({'figure.dpi': 300})ConfusionMatrixDisplay(confusion_matrix=cn_matrix, display_labels=attributes.article_labels).plot(include_values=False, xticks_rotation='vertical')plt.rcParams.update({'figure.dpi': 100})plt.rcParams.update({'font.size': 5})plt.title("Article types")plt.savefig("confusion_matrix_article.png")# plt.show()if show_images:labels = gt_labels if show_gt else labelstitle = "Ground truth labels" if show_gt else "Predicted labels"n_cols = 5n_rows = 3fig, axs = plt.subplots(n_rows, n_cols, figsize=(10, 10))axs = axs.flatten()for img, ax, label in zip(imgs, axs, labels):ax.set_xlabel(label, rotation=0)ax.get_xaxis().set_ticks([])ax.get_yaxis().set_ticks([])ax.imshow(img)plt.suptitle(title)plt.tight_layout()plt.savefig("images.png")# plt.show()model.train()if __name__ == '__main__':"""Dir testing"""attributes = AttributesDataset(original_csv_path)val_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)])test_dataset = FashionDataset(val_csv_path, attributes, val_transform)test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)model = MultiOutputModel(n_color_classes=attributes.num_colors, n_gender_classes=attributes.num_genders,n_article_classes=attributes.num_articles).to('cpu')visualize_grid(model, test_dataloader, attributes, device, checkpoint)"""Single image testing"""model = torch.load(checkpoint, map_location='cpu')img = Image.open(predict_image_path)  if img.mode != 'RGB':  img = img.convert('RGB')  img_tensor = val_transform(img).unsqueeze(0)with torch.no_grad():outputs = model(img_tensor)_, predicted_color = outputs['color'].cpu().max(1)_, predicted_gender = outputs['gender'].cpu().max(1)_, predicted_article = outputs['article'].cpu().max(1)print("Predicted color ====> {}, gender: {}, article: {}".format(attributes.color_id_to_name[predicted_color.item()],attributes.gender_id_to_name[predicted_gender.item()],attributes.article_id_to_name[predicted_article.item()]))

这篇关于【深度学习实战—7】:基于Pytorch的多标签图像分类-Fashion-Product-Images的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002541

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用