User-Based 用户相似度: w u v = ∣ N ( u ) ∩ N ( v ) ∣ ∣ N ( u ) ∪ N ( v ) ∣ w_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|} wuv=∣N(u)∪N(v)∣∣N(u)∩N(v)∣ w u v = ∣ N ( u ) ∩ N ( v ) ∣ ∣ N ( u ) ∣ ∣ N (
一、简述 距离计算和邻域分析是理解网格和点云的形状、结构和特征的重要工具。我们这里要基于一些3D库来提取基于距离的信息并将其可视化。 与深度图或体素相比,点云和网格表示 3D 空间中的非结构化数据。点由它们的 (X, Y, Z) 坐标表示,在 3D 空间中可能彼此靠近的两个点在数组表示中可能很远。与2d图像中的相同问题相比,理解某个点的邻域并不是一项简单的任