基于邻域的推荐算法

2024-04-13 13:48
文章标签 算法 推荐 邻域

本文主要是介绍基于邻域的推荐算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

User-Based

  1. 用户相似度:
    w u v = ∣ N ( u ) ∩ N ( v ) ∣ ∣ N ( u ) ∪ N ( v ) ∣ w_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|} wuv=N(u)N(v)N(u)N(v)
    w u v = ∣ N ( u ) ∩ N ( v ) ∣ ∣ N ( u ) ∣ ∣ N ( v ) ∣ w_{uv} = \frac{|N(u) \cap N(v)|}{\sqrt{|N(u)| |N(v)|}} wuv=N(u)N(v) N(u)N(v)
  2. 建立物品-用户倒排表,转化为用户相似度矩阵:
def UserSimilarity(train):# build inverse table for item_usersitem_users = dict()for u, items in train.items():for i in items.keys():if i not in item_users:item_users[i] = set()item_users[i].add(u)#calculate co-rated items between usersC = dict()N = dict()for i, users in item_users.items():for u in users:N[u] += 1for v in users:if u == v:continueC[u][v] += 1#calculate finial similarity matrix WW = dict()for u, related_users in C.items():for v, cuv in related_users.items():W[u][v] = cuv / math.sqrt(N[u] * N[v])return W
  1. UserCF下用户 u u u对物品 i i i的感兴趣程度, S ( u , k ) S(u,k) S(u,k)是和用户 u u u相似度最接近的 K K K个用户, N ( i ) N(i) N(i)是对物品 i i i有过行为的用户集合:
    p ( u , i ) = ∑ v ∈ S ( u , K ) ∩ N ( i ) w u v r v i p(u, i) = \sum_{v\in S(u,K) \cap N(i)}w_{uv}r_{vi} p(u,i)=vS(u,K)N(i)wuvrvi
  2. 代码实现:
def Recommend(user, train, W):rank = dict()interacted_items = train[user]for v, wuv in sorted(W[u].items, key=itemgetter(1), \reverse=True)[0:K]:for i, rvi in train[v].items:if i in interacted_items:#we should filter items user interacted beforecontinuerank[i] += wuv * rvireturn rank
  1. 改进用户相似度计算公式:
    w u v = ∣ N ( u ) ∩ N ( v ) ∣ ∣ N ( u ) ∣ ∣ N ( v ) ∣ w_{uv} = \frac{|N(u) \cap N(v)|}{\sqrt{|N(u)| |N(v)|}} wuv=N(u)N(v) N(u)N(v)

这篇关于基于邻域的推荐算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900309

相关文章

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

在 Windows 上安装 DeepSeek 的完整指南(最新推荐)

《在Windows上安装DeepSeek的完整指南(最新推荐)》在Windows上安装DeepSeek的完整指南,包括下载和安装Ollama、下载DeepSeekRXNUMX模型、运行Deep... 目录在www.chinasem.cn Windows 上安装 DeepSeek 的完整指南步骤 1:下载并安装

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)