题目:LINK 题目求 P = (2^(n1) + 2^(n2) + ...+ 2^(nk))/n (mod n) 对于分子部分我们可以打表求得(ps:用快速幂多次计算会TLE), 问题成了a/n mod n, 我们可以用下面解法求得。 1), a/b mod c ==> (a mod bc) / b 对于所有的情况都适用,要注意的问题就是 (b*c)*(b*c) 会不会溢出,这儿的
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=688 此题题解 不太懂,因为对这些概念,定理太模糊,理解起来比较困难,不过想想还是应该把代码写出来; 题意:给你一个数 n ,代表 n 种颜色和n个珠子,问你可以组合多少种长度为n的项链;不需要用掉n种颜色,项链的旋转和翻转都是为同一条 题解: http://pan.baidu
乘法逆元基础 可以使用扩展欧几里得算法或费马小定理求得。 乘法逆元进阶 有一种乘法逆元的线性递推算法: 显然 1 − 1 ≡ 1 ( m o d m ) 1^{-1} \equiv 1 \pmod m 1−1≡1(modm); 对于 i − 1 i^{-1} i−1,我们令 k = ⌊ m i ⌋ k = \lfloor \frac{m}{i} \rfloor k=⌊im⌋, j =
计算模乘逆元原理上有四种方法: 1.暴力算法 2.扩展欧几里得算法 3.费尔马小定理 4.欧拉定理 模乘逆元定义:满足 ab≡1(mod m),称b为a模乘逆元。以下是有关概念以及四种方法及程序。 文章出处:Modular Multiplicative Inverse The modular multiplicative inverse of an integer a modu
You are given an n-dimensional grid in which the dimensions of the grid are a1?×?a2?×?…?×?an. Each cell in the grid is represented as an n-tuple (x1,?x2,?…,?xn) (1?≤?xi?≤?ai). Two cells are considere
ACM国际大学生程序设计竞赛全球总决赛 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 7034 Accepted Submission(s): 5595 Problem Description 要求(A
题目链接:http://codeforces.com/problemset/problem/327/C There is a long plate s containing n digits. Iahub wants to delete some digits (possibly none, but he is not allowed to delete all the digits) to f
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 191 Accepted Submission(s): 99 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列