Codeforces Round #295 (Div. 1) C. Pluses everywhere (组合数学+乘法逆元)

2024-08-24 21:18

本文主要是介绍Codeforces Round #295 (Div. 1) C. Pluses everywhere (组合数学+乘法逆元),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这题可以这样想:

      对于当前第i位来说,该位若在个位上出现,那么第i位和第i+1位中间肯定有一个“+”,剩下的k-1个“+”分布在剩下的n-2个空隙中,所以出现的总次数是C(n-2,k)。同理,在十位上出现的总次数是C(n-3,k)。于是每个数字的贡献值就可以求出来了,累加即可。

      所以大体思路是遍历所有可能出现的位数,从个位开始,分成两部分计算,一部分用前缀和计算出前面所有的在该位上的贡献和,另一部分算出当前位置在该位上的贡献值。

     然后对于求组合数,可以先将阶乘预处理出来,然后用乘法逆元求出组合数的值。

代码如下:

#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
using namespace std;
#define LL long long
#define pi acos(-1.0)
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const double eqs=1e-9;
char st[110000];
int n, k, a[110000], sum[110000];
LL fac[110000], inv_fac[110000];
LL qsm(LL n, LL k)
{LL ans=1;while(k>0){if(k&1)ans=ans*n%mod;k>>=1;n=n*n%mod;}return ans;
}
void init()
{int i;fac[0]=1;for(i=1;i<=n;i++){fac[i]=fac[i-1]*i;if(fac[i]>=mod) fac[i]%=mod;}inv_fac[n]=qsm(fac[n],mod-2);for(i=n-1;i>=0;i--){inv_fac[i]=inv_fac[i+1]*(i+1);if(inv_fac[i]>=mod) inv_fac[i]%=mod;}
}
LL comb(LL n, LL k)
{return fac[n]*inv_fac[k]%mod*inv_fac[n-k]%mod;
}
int main()
{int i;LL ans=0, base=1, s;scanf("%d%d",&n,&k);scanf("%s",st+1);init();sum[0]=0;for(i=1;i<=n;i++){a[i]=st[i]-'0';sum[i]=a[i]+sum[i-1];}for(i=1;i<=n-k;i++){s=(LL)sum[n-i]*base%mod;ans+=s*comb(n-i-1,k-1)%mod;s=(LL)a[n-i+1]*base%mod;ans+=s*comb(n-i,k)%mod;base=base*10;if(ans>=mod) ans%=mod;if(base>=mod) base%=mod;}printf("%I64d\n",ans);return 0;
}


这篇关于Codeforces Round #295 (Div. 1) C. Pluses everywhere (组合数学+乘法逆元)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103622

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op