数论 —— 逆元与同余式定理

2024-06-17 22:48
文章标签 数论 逆元 余式定理

本文主要是介绍数论 —— 逆元与同余式定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【同余模公式】

  • (A+B)%M = (A%M+B%M) % M
  • (A*B)%M = (A%M*B%M) % M
  • (A/B)%M = (A*C)%M = (A%M*C%M) % M,其中 B*C≡1(mod M),B、M 互质,C 称为 B 的逆元

(A/B)%M 的推导:(A/B)%M = (A/B) * 1 % M = (A/B)*B*C % M = (A*C) % M

【威尔逊定理】

若 p 为素数,则:(p-1)!\equiv-1(mod\:p)

其逆定理同样成立,即:若 (p-1)!\equiv-1(mod\:p),则 p 为素数

【二次探测定理】

内容:若 p 是素数且 0<x<p,则​ x^{2}\equiv 1(mod\:p) 仅有的两个解为:x=1,p-1

证明:

由于 x^{2}\equiv 1(mod\:p) ,因此:x^{2}-1\equiv 0(mod\:p),也即 (x+1)(x-1)\equiv 0(mod\:p)

因为 p 是素数,因此 p 必然是或整除 x-1 或整除 x+1,由此可推出定理。

【费马小定理】

若 a 为正整数,p 是一质数,则: GCD(a,p)=1 ,那么 a^{p-1} \equiv 1(mod\:\, p)

推论:a^p\:mod\:m\equiv a^{p\:mod\:(m-1)}

【欧拉定理】

若 a 与 m 互质,则:a^{\phi(m)}\equiv1(mod\:m)

 

这篇关于数论 —— 逆元与同余式定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070643

相关文章

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

数论ZOJ 2562

题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数。 性质一:一个反素数的质因子必然是从2开始连续的质数。 性质二:p=2^t1*3^t2*5^t3*7

POJ2247数论

p = 2^a*3^b*5^c*7^d 求形如上式的第n小的数。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.u

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

CSP-J基础之数学基础 初等数论 一篇搞懂(二)

文章目录 前言算术基本定理简介什么是质数?举个简单例子:重要的结论:算术基本定理公式解释:举例: 算术基本定理的求法如何找出质因数:举个简单的例子: 重要的步骤:C++实现 同余举个例子:同余的性质简介1. 同余的自反性2. 同余的对称性3. 同余的传递性4. 同余的加法性质5. 同余的乘法性质 推论 总结 前言 在计算机科学和数学中,初等数论是一个重要的基础领域,涉及到整数

2014年暑假培训 - 数论

A银河上的星星 /**************************************************************     Problem: 1014     User: DoubleQ     Language: C++     Result: Accepted     Time:190 ms     Memor

ZOJ1007(数论)

题目链接:点击打开链接 解题思路:   纯粹的数学题,没有输入,直接要求输出.直接给出的求和式子极限到无穷,无法直接计算.Hint里给出了提示,大意就是说求g(x) - g(1)的求和极限,最后再加上g(1)就能求出g(x).   由g(x)  - g(1) 能够得出 1 / k*(k+x) - 1 / k * (k + 1) = (1 - x) / k * ( k + 1) * (k

每日一题~cf 970 div3 (A思维,B小模拟,C二分,D排列数建图成环,E 26个字母暴力+前缀和,F 逆元,G 数论gcd )

A 题意: 有 a 个1 ,b 个2.问是否能将这些数划分为两个数值相等的集合。 输出 YES 或者 NO —————— 问题等价于 将数组 分成两个数值相同的数组。所以sum 应该是偶数。也就是说 1 的个数是偶数。在i1的个数是偶数的情况下,将 2 分成两份,如果2 的个数是偶数,OK。如果是奇数那么需要1来补齐,如果1 的个数大于等于2那么可以补齐。(1 的个数是偶数,需要2个1来补齐,剩下