证明:p为质数时(p-1)!的逆元为p-1

2024-04-14 23:48
文章标签 质数 证明 逆元

本文主要是介绍证明:p为质数时(p-1)!的逆元为p-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

此文章转载自:http://blog.csdn.net/YihAN_Z

证明:当p为质数时,(p-1)!的逆元为p-1。

若(p-1)!的逆元为p-1,则有
这里写图片描述

接下来证明(p-2)!与1同余。(p-2)!在模p的意义下等于1说明2~p-2可以分成若干对,每一对两两互为逆元(即每一个数乘完后可以被另一个数抵消)。由于p为质数,1~p-1的所有数都有逆元。只要证明2~p-2中的数的逆元都不等于自身即可。

证明:这里写图片描述

这里写图片描述

显然x=0时有解a=1
若x!=0,则说明(a+1)(a-1)一定是p的倍数。p为质数,在[2,p-1]中只有当a=p-1才可能出现p的倍数。

因此,(p-1)!的逆元为(p-1)。

—————————————————Todobe的感悟———————————————————

无用知识++

这篇关于证明:p为质数时(p-1)!的逆元为p-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904366

相关文章

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

每日一题~cf 970 div3 (A思维,B小模拟,C二分,D排列数建图成环,E 26个字母暴力+前缀和,F 逆元,G 数论gcd )

A 题意: 有 a 个1 ,b 个2.问是否能将这些数划分为两个数值相等的集合。 输出 YES 或者 NO —————— 问题等价于 将数组 分成两个数值相同的数组。所以sum 应该是偶数。也就是说 1 的个数是偶数。在i1的个数是偶数的情况下,将 2 分成两份,如果2 的个数是偶数,OK。如果是奇数那么需要1来补齐,如果1 的个数大于等于2那么可以补齐。(1 的个数是偶数,需要2个1来补齐,剩下

js算法题,给任意一个偶数,找出他的所有的质数因子

/*给任意一个偶数,找出他的所有的质数因子*/ function primeFactor(n){     var factors=[],            divistor=2;     if(typeof n !=='number'||!Number.isInteger(n)){          return 0;     }; //如果不是偶数返回0,如果是0,返回0

一种极简的余弦定理证明方法

余弦定理的证明方法有很多种,这里介绍一种极简的证明方法。该方法是本人在工作中推导公式,无意中发现的。证明非常简单,下面简单做下记录。   如上图为任意三角形ABC,以点C为原点,建立直角坐标系(x轴方向任意,y轴与x轴垂直),x轴与CB夹角为 θ 1 \theta_1 θ1​,x轴与CA夹角为 θ 2 \theta_2 θ2​。点B的坐标为 ( a c o s θ 1 , a s i n θ

零知识证明-ZK-SNARKs基础(七)

前言 这章主要讲述ZK-SNARKs 所用到的算术电路、R1CS、QAP等 1:算术电路 算术运算电路 1>半加器:实现半加运算的逻辑电路 2>全加器:能进行被加数,加数和来自低位的进位信号相加,并根据求和结果给出该位的进位信号 说明:2进制加,低位进位 相当于 结果S为 = A+B+C(地位进位) 高位进位 = A+B+C(地位进位) 三个中 有最少2个为1 高位就有进位了 【1】 方程转算

云WAF在安全审计和合规性证明方面起到什么作用?

云WAF在安全审计和合规性证明方面起到什么作用? 云WAF的基本功能 云WAF(Cloud Web Application Firewall)是一种部署在云端的网络安全解决方案,它能够为Web应用程序提供强有力的保护,通过检测和阻止恶意流量、攻击和漏洞,确保Web应用程序的安全性和可用性。云WAF具备访问控制、网络安全审计、漏洞检测、应用安全保护、数据安全监控和审计等功能,这些功能共同构成了一

安全多方计算 同态密文计算 零知识证明 是什么、对比、优缺点

基于计算困难性理论的安全多方计算可以进一步细分为基于混淆电路的方案或者基于秘密分享的方案。 基于混淆电路的方案将所需计算的函数表达成一个巨型的布尔电路,例如,目前表达一次 SHA-256 计算至少需要使用 13 万个布尔门。尽管学术界已经提供了大量优化方案,通用 电路转化的过程依旧很复杂。由于需要使用不经意传输技术来安全地提供电路输入,即便 在有硬件加速的条件下,这类方案的处理吞吐量和计算效率依

算法---计数质数(Java)

题目:计数质数 给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。 示例 1: 输入:n = 10 输出:4 解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。 示例 2: 输入:n = 0 输出:0 示例 3: 输入:n = 1 输出:0 提示: 0 <= n <= 5 * 106 解决方法:(埃氏筛) 思路: 算法由希腊数学家厄拉多塞(\rm

再次拿下品牌全球代言人,王鹤棣商业价值再度证明!

9月2日,FENTY BEAUTY品牌正式官宣王鹤棣为全球代言人,这也是该品牌创立至今官宣的中国首位全球代言人。 FENTY BEAUTY是由美国歌手Rihanna创立于2017年的高端美妆品牌,也是LV母公司LVMH集团联手RIHANNA一同孵化的品牌,因其产品具有强包容性,以及能满足消费者多元需求,获得了国际声誉和市场高度认可,品牌全球吸金力排在集团第一梯队,已连年被纳入LVMH集团