电磁专题

CST电磁仿真软件如何计算天线“x”dB的波束宽度?

CST的后处理模板内容非常的丰富,基本可以实现各种结果的处理。我们以提取天线远场方向图的波束宽度的结果来介绍一下后处理的使用方法。 用了太多次的CST软件自带的喇叭天线和振子天线。本例中我们换一下,用一个Antenna Magus库提取的77GHz的天线作为示例,如何用Antenna Magus快速生成天线可见链接,生成的串馈天线,如下图所示: ​ 完成仿真后,点击farfield结果

深圳比创达电子EMC|EMC与EMI滤波器:守护电子设备的电磁防火墙

随着科技的飞速发展,电子设备在我们日常生活中的普及率越来越高,从智能手机到大型工业设备,无一不体现出电子技术的重要地位。然而,随之而来的电磁兼容性问题(EMC)和电磁干扰问题(EMI)也日益凸显,成为了制约电子设备性能提升的重要因素。在这其中,EMC与EMI滤波器凭借其出色的电磁防护能力,成为了守护电子设备安全的利器。 一、EMC与EMI滤波器的基本概念 首先,我们需要了解EMC与EMI滤波器

ADS基础教程22 - 有限元电磁仿真(FEM)

EM介绍 一、引言二、基本概念1.EM介绍 三、总结 一、引言 在ADS基础教程19中介绍过,EM包括Momentum simulator(动量仿真器)和FEM(Finite Element Method)simulator(有限元仿真器)。ADS基础教程20和ADS基础教程21,已经介绍了Momentum simulator(动量仿真器)的操作。本章节开始介绍FEM(Fin

ADS基础教程21 - 电磁仿真(EM)模型的远场和场可视化

模型的远场和场可视化 一、引言二、操作步骤1.定义参数2.执行远场视图(失败案例)3.重新仿真提取参数 三、总结 一、引言 本文介绍电磁仿真模型的远场和场可视化。 二、操作步骤 1.定义参数 1)在Layout视图,工具栏中点击EM调出模型设置界面。 2)在模型设置界面中,首先设置Output Plan,将Save current for:选择All generate

ADS基础教程20 - 电磁仿真(EM)参数化

EM介绍 一、引言二、参数化设置1.参数定义2.参数赋值3.创建EM模型和符号 四、总结 一、引言 参数化EM仿真,是在Layout环境下创建参数,相当于在原理图中声明变量。 二、参数化设置 1.参数定义 1)在Layout视图,菜单栏中选中EM>Component>Parameters… 2)在弹出的参数编辑框中,Create/Edit Parameter有一栏Ty

CST电磁仿真软件表面等离子极化激元SPP --- 一维光栅耦合 - 衍射模式, 效率, Floquet端口

这两期我们看一下衍射光栅的高阶衍射、衍射效率、反射率。具体到仿真设置,就是Floquet端口的模式分析,S参数与衍射效率和反射率的关系。那么研究这些衍射和表面等离子极化激元SPP有什么关系呢?关系可大了,光栅是一种能够用来激励出SPP模式的结构,所以我们要了解其衍射特性,才能激励出表面波SPP。 使用等离子激元单元模板,开启计算透射率反射率吸收率: 添加银材料,画个因材料的基底,这里d是光

半导体光子电学期末笔记1: 电磁光学基本理论

Chapter 2: 电磁光学基本理论 电磁光学理论概述 真空中麦克斯韦方程组[p9] 在自由空间中,麦克斯韦方程组可以写成如下形式: { ∇ × H = ϵ 0 ∂ E ∂ t (1) ∇ × E = − μ 0 ∂ H ∂ t (2) ∇ ⋅ E = 0 (3) ∇ ⋅ H = 0 (4) \begin{cases} \nabla \times \mathbf{H} = \epsil

基于LQR控制算法的电磁减振控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于LQR控制算法的电磁减振控制系统simulink建模与仿真。仿真输出控制器的收敛曲线。 2.系统仿真结果 3.核心程序与模型 版本:MATLAB2022a 08_029m 4.系统原理简介         电磁减振控制系统采用线性二次型调节器

一文看懂!电磁仿真软件CST Studio Suite的技术发展历程

CST工作套件室是一款功能强大、专业级别的软件包,用于进行微波无源器件和天线的仿真分析和设计。它支持的应用领域包括耦合器、滤波器、环流器、隔离器、谐振腔、平面结构、连接器、电磁兼容、集成电路封装以及各种类型的天线和天线阵列。该软件可以提供必要的S参数、天线方向图等多种必需结果。此外,它还可以快速和精确地进行仿真分析,从而提高设计效率和优化设计成果。 CST的技术迭代 1、 时域有限积分法 该

基于模糊PID控制器的汽车电磁悬架控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于模糊PID控制器的汽车电磁悬架控制系统simulink建模与仿真。 2.系统仿真结果 上面的仿真结果是无控制器和LQG的对比,以及有控制器和LQG的对比仿真。 3.核心程序与模型 版本:MATLAB2022a 08_015m 4.系统原理简介

电磁仿真--CST的时域求解器和频域求解器

目录 1. 简介 2. 综合概述 2.1 时域求解器 2.2 频域求解器 3. 优劣势对比 3.1 时域求解器(T、TLM) 3.2 频域求解器(F) 3.3 优势与劣势对比 4. 总结 1. 简介 CST Studio Suite 提供多种类型的高频求解器模块,本文分析常用两种 T/TLM 和 F。   2. 综合概述 2.1 时域求解器 时域求解器有两

电磁仿真--CST Microwave Studio Solver Overview

目录 1. 简介 2. 重要概念 2.1 Volumetric/Surface Mesh 2.2 FIT 求解器 2.3 TLM 求解器 2.4 FEM 求解器 2.5 MOM/MLFMM 2.6 SBR 求解器 3. 总结 1. 简介 本文总结了 CST Microwave Studio 中的一些重要概念,包括网格和求解器的不同类型和用途。   2. 重要概

电磁仿真软件CST六面体网格和六面体TLM网格的区别【仿真入门】

六面体网格(1) Time Domain Solver中使用的Hexahedral Mesh! 网格可以说是为了Maxwell方程式计算,将仿真结构分割成许多小的网格单元。因此,仿真计算中识别的结构是网格结构。 Time Domain Solver中使用的Hexahedral Mesh是将结构切成六面体形状的网格。因此,如右图所示的球体(Sphere)进行网格剖分时,会显示为阶梯状(Stai

电磁仿真--基本操作-CST-(5)

目录 1. 简介 2. 具体操作 2.1 设置WCS坐标系 2.2 使用 Brick 工具 2.3 删除对称部分 3. 总结 1. 简介 在进行EMC仿真时,经常需要满足一些特定的需求,比如在一个完整的GND平面上方布置金属走线,并在金属走线和GND之间施加Discrete Port端口。 一开始,我尝试了一些笨拙的方法,比如手动计算四个点的坐标,然后使用Brick工具绘

基于电磁激励原理利用视触觉传感器估计抓取力矩的方法

由于触觉感知能使机器人通过其触觉传递获取丰富的接触信息,触觉感知已经成为机器人机械臂的一种流行的感知方式。而在触觉传感器可获取的各种信息中,通过外界接触从抓取物体传递到机器人手指的力矩等信息,在完成各种指令的实现尤为重要。如图所示为通过触点丰富的USB棒插入对齐问题来演示本文所介绍方法。然而,相比于其他传感方式,如力、纹理或滑动识别,触觉力矩估计受到的关注相对较少。 在本文工作中,引入了触觉

电磁仿真--基本操作-CST-(4)

目录 1. 简介 2. 建模过程 2.1 基本的仿真配置 2.2 构建两个圆环体和旋转轴 2.3 切分圆环体 2.4 衔接内外环 2.5 保留衔接部分 2.6 绘制内螺旋 2.7 绘制外螺旋 2.8  查看完整体 2.9 绘制引脚 2.10 设置端口 2.11 仿真结果 3. 使用Digilent AD2进行测试 3.1 进行短路补偿 3.2 扫描电感曲线 3.3

电磁仿真--基本操作-CST-(2)

目录 1. 回顾基操 2. 操作流程 2.1 创建工程 2.2 修改单位 2.3 创建 Shape 2.4 使用拉伸 Extrude 2.5 修改形状 Modify Locally 2.6 导入材料 2.7 材料解释 2.8 材料分配 2.9 查看已分配的材料 2.10 设置频率、背景和边界 2.11 选择 Edge,设置端口 2.12 配置求解器 2.13 运行仿真

CST电磁仿真软件的激励设置和使用场导入【基础教程】

设置平面波激励 确认平面波的特性! Simulation > Sources and Loads > Plane Wave 通过Plane Wave在远离观测对象的位置接通场源(Field Source),进行入射波的仿真分析该功能主要在RCS(Radar Cross Section)和EMS(Electromagnetic Susceptibility)这类受外部场源影响的应用中使用。

电磁仿真--S参数测试中的参考阻抗

目录 1. 背景介绍 2. 参考阻抗 2.1 简单二端口网络 2.2 离散端口模型 3. 阻抗归一化的指定值 4. 总结 1. 背景介绍 当我们使用网络分析仪来测量S参数,或借助示波器来检测高速信号时,选择仪器系统预设的参考阻抗变得异常简便,通常这个值是50Ω。在这种情况下,我们往往不会过多考虑阻抗选择的问题。然而,当转向使用仿真软件时,情况就完全不同了。在仿真环境中,你拥

电磁仿真--基本操作-CST快捷方式

目录 1. 常用快捷键 1.1 视图类 1.2 WCS操作 1.3 元素隐藏与显示 1.4 特征选取与取消 2. 增加自定义快捷键 2.1 增加Q:Local WCS 2.2 增加U:Unselect All 3. 总结 1. 常用快捷键 操作CST软件时,不需要掌握太多快捷键,熟悉和使用一些常用的快捷键即可。 1.1 视图类 SPACE:使结构最佳视窗显示,适用

电磁仿真--Discrete Port-深入探讨

目录 1. Discrete Port 概述 2. 探究 Discrete Port 2.1 电压端口 2.2 电流端口 2.3 阻抗元件(S-参数类型) 2.3.1 Radius 3. 常用离散端口结构 3.1 离散边端口(Discrete Edge Ports) 3.2 离散面端口(Discrete Edge Ports) 1. Discrete Port 概述

CST电磁仿真的修复功能解析【操作流程】

使用Curve生成3D图形 使用Curve生成3D Model! Modeling > Shapes > Create Shape from Curve 如036.使用Curve功能所述,不是说绘制Curve就在相应空间直接生成3D Model。那么怎样才可以将我们绘制的Curve转换成3D图形呢? Extrude Curve 选中平面的Curve指定高度和材料,生成3DModel。

CST电磁仿真物体表面的Sheet结构和生成3D Model【基础教程】

由Sheet结构生成3D Model 使用Shell Solid and Thicken Sheet! Modeling > Tools > Shape Tools > Shell Solid or Thicken Sheet Shell Solidor ThickenSheet会根据不同类型的模型提供两种完全不同的功能。 如033.由3D Model生成Cavity 所述,选中某个3D

低频电磁仿真 | 新能源汽车性能提升的利器

永磁同步电机 新能源汽车的心脏 近年来,全球变暖的趋势日益加剧,极端天气事件层出不穷,这些现象都反映出当前气候形势的严峻性。为了应对这一全球性挑战,各国纷纷采取行动,制定了一系列降碳、减碳的措施。中国在2020年提出了“3060”双碳目标,推动以二氧化碳为主的温室气体减排。在此背景下,大力发展新能源汽车成为实现目标切实有效的重要举措,新能源汽车逐渐替代传统燃油车也成为行业发展的必然趋势。

基于昇思的大地电磁智能反演模型达到业界SOTA,助力地球物理勘探加速智能化

近日,华为AI4S Lab与清华大学李懋坤教授团队、华为先进计算与存储实验室合作,基于昇腾AI处理器与昇思MindSpore AI框架打造了大地电磁智能反演模型。该模型通过变分自编码器(VAE)灵活嵌入了多物理先验知识,达到了业界SOTA。该成果已被国际顶级地球物理期刊《Geophysics》收录,相关代码已在昇思MindSpore Elec电磁仿真套件代码仓中开源,同时,该成果也在昇思人工智能框

深入电机控制基础知识(1)- 磁共能与电磁转矩

1.1 概述 打开任意一本电机学的教材,翻到电机基本概念的说明的位置,总能看到一句描述电机本质的话:电机是一种机电能量转化的装置。 机电能量转化,很生动形象的说明电机的工作原理。对于电动机而言,吸收电能,释放机械能,对于发电机而言,吸收机械能,转化为电能。在这个过程中,电机会产生电磁转矩。 那么大家有没有想过,为什么叫电磁转矩?电磁转矩又是怎么产生的呢?下面我就会从能量守恒的角度,推导一下电磁转