电磁仿真软件CST六面体网格和六面体TLM网格的区别【仿真入门】

2024-05-24 14:44

本文主要是介绍电磁仿真软件CST六面体网格和六面体TLM网格的区别【仿真入门】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六面体网格(1)

Time Domain Solver中使用的Hexahedral Mesh!

网格可以说是为了Maxwell方程式计算,将仿真结构分割成许多小的网格单元。因此,仿真计算中识别的结构是网格结构。

Time Domain Solver中使用的Hexahedral Mesh是将结构切成六面体形状的网格。因此,如右图所示的球体(Sphere)进行网格剖分时,会显示为阶梯状(Staircase)的网格。换句话说,网格结构无法正常体现实际的3D结构,所以可能会导致不准确的仿真结果。

为了弥补六面体网格的缺点,CST开发了专有网格技术:能在一个网格中识别两种材料的PBA(理想边界近似Perfect Boundary Approximation)和识别三种材料的(介质、导体、介质)的TST(Thin sheetTechnology 薄片技术)。这样,能实现对曲面物体细线、薄片结构的完美逼近,可以得到精确的仿真结果。

如果一个网格内穿过薄薄的导体Sheet时,利用TST方式可以识别出来并进行正常的仿真分析。但是穿过两个导体Sheet时,会产生阶梯状网格(Staircase Mesh)。

六面体网格(2)

Time Domain Solver中使用的Hexahedral Mesh!

Staircase Mesh在开始仿真后进行矩阵计算(Matrix Calculation)时,弹出下面的警告信息的同时,Mesh View中显示为青绿色。如果发生Staircase Mesh时,必须要确认该网格发生在哪个部位。

因为,Staircase Mesh会在全部网格填满PEC的状态下进行仿真分析。比如,有两个如下图所示的倾斜sheet,其中间发生Staircase Mesh时,两个sheet处于短路状态,无法得到正确的仿真结果。

这时候可以使用前章节介绍的Mesh Setting和Local Mesh等方法。如果觉得这个操作有难度可以试试Adaptive Mesh Refinement功能。

可以在Solver Setup窗口设置自适应网格加密(Adaptive Mesh Refinement)功能。勾选该设置的状态下进行仿真分析时,会逐渐增加网格数量反复进行迭代计算。随着迭代次数的增加,用于仿真的网格数量会越来越多,仿真结果的准确度也会越高。

如果前后两次迭代计算的结果差异达到设置的判定值以内,那么就意味着仿真已经收敛,网格也达到准确的仿真分析所需的数量。寻找精确仿真分析所需网格数量的过程,称之为AdaptiveMesh。但是,使用六面体网格时用户可以自由地调整网格,所以使用Local Mesh或MeshSpecial设置可以更加有效地设置网格,快速取得准确的结果。

因此,不建议在TimeDomain Solver中使用Adaptive Mesh。但Adaptive Mesh的好处是可以用最少的设置取得准确的结果。大家可以做一下参考!

六面体TLM网格

Time Domain Solver中使用的Hexahedral TLM Mesh!

使用Time Domain Solver时,在Mesh Type设置栏或Solver Setup窗口,可以看到Hexahedral下拉菜单中有 HexahedralTLM选项。

TLM Solver是传输线矩阵(Transmission Line Matrix)的缩写,通过八又树网格(ctree Mesh)形式可以减少整体网格数量,网格效率高。就原先的六面体网格而言,在又小又复杂的结构上剖分成小的网格,会影响整个仿真领域,导致网格数量巨大。

但是TLM Mesh可以在细小结构上剖分成小的网格,大结构上剖分成大的网格,是可以将多尺度(multiscale)问题的影响降到最低的网格方式。

因此,对同时存在大型结构和细小型结构的模型进行仿真分析的领域,例如毫米波天线阵列、EMC、E3(EMP,Lightning等)的分析中,可以使用TLM Mesh 。并且,还可以使用GPU进行加速,所以如果仿真的结构由于多尺度问题导致 网格数量巨大的话,可以考虑采用TLM Mesh。大家可以参考一下!

【推荐内容】

ABAQUS设置各向异性材料的蠕变步骤

Abaqus查看本构模型的方程方法

Abaqus软件xml分析失败是什么原因?

这篇关于电磁仿真软件CST六面体网格和六面体TLM网格的区别【仿真入门】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998701

相关文章

Mybatis的mapper文件中#和$的区别示例解析

《Mybatis的mapper文件中#和$的区别示例解析》MyBatis的mapper文件中,#{}和${}是两种参数占位符,核心差异在于参数解析方式、SQL注入风险、适用场景,以下从底层原理、使用场... 目录MyBATis 中 mapper 文件里 #{} 与 ${} 的核心区别一、核心区别对比表二、底

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C# Semaphore与SemaphoreSlim区别小结

《C#Semaphore与SemaphoreSlim区别小结》本文主要介绍了C#Semaphore与SemaphoreSlim区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、核心区别概览二、详细对比说明1.跨进程支持2.异步支持(关键区别!)3.性能差异4.API 差

Java中自旋锁与CAS机制的深层关系与区别

《Java中自旋锁与CAS机制的深层关系与区别》CAS算法即比较并替换,是一种实现并发编程时常用到的算法,Java并发包中的很多类都使用了CAS算法,:本文主要介绍Java中自旋锁与CAS机制深层... 目录1. 引言2. 比较并交换 (Compare-and-Swap, CAS) 核心原理2.1 CAS

SpringCloud Stream 快速入门实例教程

《SpringCloudStream快速入门实例教程》本文介绍了SpringCloudStream(SCS)组件在分布式系统中的作用,以及如何集成到SpringBoot项目中,通过SCS,可... 目录1.SCS 组件的出现的背景和作用2.SCS 集成srping Boot项目3.Yml 配置4.Sprin

SpringMVC配置、映射与参数处理​入门案例详解

《SpringMVC配置、映射与参数处理​入门案例详解》文章介绍了SpringMVC框架的基本概念和使用方法,包括如何配置和编写Controller、设置请求映射规则、使用RestFul风格、获取请求... 目录1.SpringMVC概述2.入门案例①导入相关依赖②配置web.XML③配置SpringMVC

MySQL索引踩坑合集从入门到精通

《MySQL索引踩坑合集从入门到精通》本文详细介绍了MySQL索引的使用,包括索引的类型、创建、使用、优化技巧及最佳实践,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录mysql索引完整教程:从入门到入土(附实战踩坑指南)一、索引是什么?为什么需要它?1.1 什么

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof