Yang, B., Mitchell, T., 2017. Leveraging Knowledge Bases in LSTMs for Improving Machine Reading. Association for Computational Linguistics, pp. 1436–1446. 链接:http://www.aclweb.org/anthology/P/P17
Citation: Hu,S., Zou, L., Yu, J. X., Wang, H., & Zhao, D. (2018). Answering natural language questions by subgraph matching over knowledge graphs. IEEE Transactions on Knowledge & Data Engineering,
References: Explainable Recommendation via Multi-Task Learning in Opinionated Text Data Published at: The 41st International ACM SIGIR Conference on Research andDevelopment in Information Retriev
论文笔记整理:吴涵,天津大学硕士,研究方向:自然语言处理。 来源:2019 Association for Computational Linguistics论文链接:https://www.mitpressjournals.org/doi/full/10.1162/tacl_a_00284开放源码:https://github.com/sumanbanerjee1/GCN-SeA 概述
本文转载自公众号:图谱学苑。 今天介绍的工作是An Interactive Mechanism to Improve Question Answering Systems via Feedback,作者:张欣勃,邹磊,胡森,被CIKM2019接收。本文是一篇与知识库自然语言问答系统(QA)相关的工作。在本文中,我们设计了一种旨在通过用户对QA系统的反馈,来进行提升QA系统的交互式框架(IM