论文浅尝 | DKN: 面向新闻推荐的深度知识感知网络

2024-03-27 06:08

本文主要是介绍论文浅尝 | DKN: 面向新闻推荐的深度知识感知网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

笔记整理:仲亮靓,东南大学硕士研究生,研究方向是基于知识图谱的推荐系统


640?wx_fmt=png

动机

新闻文本的语言非常凝练,其中包含了很多实体和常识知识。但目前的新闻个性化推荐方法都没有利用这些外部知识,也没有使用新闻之间潜在的知识层面的联系。这就导致推荐的结果总是局限于简单额匹配,不能合理地扩展。

为了解决以上的问题,文章中提出了基于内容的结合知识图谱来做新闻推荐(点击率预测)的方法DKNDeep Knowledge-awareNetwork)。

贡献

文章的贡献有:

1)新提出的DKN模型是基于内容的深度学习推荐模型,适合像新闻这样的具有高度时效性的推荐

2)设计了KCNNKnowledge-awareCNN)模块来联合学习新闻的语义层和知识层的表示

3)用Attention模块对用户历史点击过的新闻对于当前候选推荐新闻的影响程度进行建模

方法

文中提出的模型图如图 1 所示。

输入:一个用户点击过的新闻的标题、一条候选推荐新闻的标题

输出:用户点击这条候选新闻的概率

步骤:

  • 将新闻标题中的词和知识图谱中实体做实体链接

  • 为每个实体搜索它在知识图谱中的相邻实体(以此来获得更加丰富、具有区分力的信息)

  • KCNN(融合新闻的词表示和新闻表示,得到一个新闻的Knowledge-aware的向量表示)

    • 多通道(multi-channel:把word embeddingentityembedding、上下文实体embedding作为CNN的三个通道

    • 词语-实体对齐(word-entity-aligned

                将标题中的词向量和实体向量一一对应,如果词向量在知识图谱中没有与之对应的实体,就用0向量来填充。

            因为词向量和实体向量来自两个不同的向量空间且训练出来的相连的维度也不一样,所以通过一个线性640?wx_fmt=png或非线性640?wx_fmt=png的方法将实体向量映射到词向量空间中。最终得到新闻的如下形式的矩阵表示:

640?wx_fmt=png


其中,w_i 表示标题中第 i 个词的词向量,e_i 表示与第i个词对应的实体的向量,\bar{e_i} 表示第i词对应的实体在知识普图中的上下文信息(所有与它相邻的实体的向量的均值)

    • 将得到的多通道堆叠矩阵放入CNN中,最终得到新闻的embedding结果

  • Attention-based 用户兴趣抽取

  • 用户对于自己点击过的每个新闻话题的兴趣并不是完全一样的,所以用户点击过的每个新闻对于用户是否点击候选推荐新闻的影响力也是不一样的,因此这里需要加入Attention机制

  • 输入:两条新闻标题(用户点击过的一条新闻和候选新闻)的KCNN embedding结果

  • 输出:该条历史新闻对于候选新闻点击率的影响权重

  • 将两个embedding结果做全连接,然后使用一个DNN(公式中用H表示)作为Attention网络,最后再用softmax函数来规格化影响权重,具体公式如下:

640?wx_fmt=png

  • 把这些历史新闻的向量和对应的权重,做加权平均,作为用户的embedding结果

640?wx_fmt=png

  • 最后再将用户的embedding结果、候选推荐新闻的embedded结果做全连接,放到一个DNN(公式中用G表示)中,得到最终的用户点击该条候选新闻的概率


640?wx_fmt=png


1 DKN算法模型框架

实验

数据来源Bing News的系统日志

数据特征:实验中给出了新闻数据中新闻标题所含的词语数量平均值、新闻标题中包含的实体数量平均值、添加上下文实体后得到的实体数量平均值等,表明了加入知识图谱中的相邻实体确实能够丰富新闻的特征,具体如下表所示。

640?wx_fmt=png

实验对比

1)文中把当前引入深度学习的协同过滤算法(DFM)和基于内容(KPCNNDSSMDeepWideDeepFMYouTubeNet)的个性化推荐算法都做了对比,实验表明DKN算法的推荐效果最好。

2)  对于DKN算法中,也做了使用不同知识表示学习算法、是否加入Attention机制、是否将entityembedding结果转换到word embedding结果的向量空间中、以及三种输入信息(Word embedding)、Entityembedding、上下文embedding)组合都做了对比实验,实验表明使用三种输入信息、TransD方法、非线性映射方法并加入Attention机制的效果最好。

总结

论文中所提出的模型主要部分还是使用了CNNAttention这两个的组合,主要创新点还是在于首次将知识图谱引入到新闻推荐算法中,也就是利用知识图谱来提取更多的新闻特征应用推荐算法中。

 



OpenKG


开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

这篇关于论文浅尝 | DKN: 面向新闻推荐的深度知识感知网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851158

相关文章

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、