###好好好#######论文浅尝 | 基于图注意力的常识对话生成

2024-05-07 14:18

本文主要是介绍###好好好#######论文浅尝 | 基于图注意力的常识对话生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文浅尝 | 基于图注意力的常识对话生成

 

OpenKG 祝各位读者新春快乐,猪年吉祥!

 

来源:IJCAI 2018.

论文下载地址:https://www.ijcai.org/proceedings/2018/0643.pdf

项目源码地址:https://github.com/tuxchow/ccm

动机

在以前的工作中,对话生成的信息源是文本与对话记录。但是这样一来,如果遇到OOV 的词,模型往往难以生成合适的、有信息量的回复,而会产生一些低质量的、模棱两可的回复,这种回复往往质量不高。

为了解决这个问题,有一些利用常识知识图谱生成对话的模型被陆续提出。当使用常识性知识图谱时,由于具备背景知识,模型更加可能理解用户的输入,这样就能生成更加合适的回复。但是,这些结合了文本、对话记录、常识知识图谱的方法,往往只使用了单一三元组,而忽略了一个子图的整体语义,会导致得到的信息不够丰富。

为了解决这些问题,文章提出了一种基于常识知识图谱的对话模型(commonsense knowledge aware conversational model,CCM)来理解对话,并且产生信息丰富且合适的回复。本文提出的方法,利用了大规模的常识性知识图谱。首先是理解用户请求,找到可能相关的知识图谱子图;再利用静态图注意力(static graphattention)机制,结合子图来理解用户请求;最后使用动态图注意力(dynamic graph attention)机制来读取子图,并产生合适的回复。

通过这样的方法,本文提出的模型可以生成合适的、有丰富信息的对话,提高对话系统的质量。

贡献

文章的贡献有:

(1)首次尝试使用大规模常识性知识图谱来处理对话生成问题;

(2)对知识图谱子图,提出了静态/动态图注意力机制来吸收常识知识,利于理解用户请求与生成对话;

(3)对比于其他系统,目前的模型生成的回复是最合适的、语法最正确的、信息最丰富的。

方法

⒈ Encoder-Decoder 模型

经典的Encoder-Decoder模型是基于sequence-to-sequence(seq2seq)的。encoder模型将用户输入(user post)X=x_1 x_2…x_n 用隐状态 H=h_1 h_2…h_n 来表示。而decoder模型使用另一个GRU来循环生成每一个阶段的隐状态,即 。在解码过程中利用了注意力机制。

当decoder模型根据概率分布生成了输出状态后,可以由这个状态经过softmax操作得到最终的输出: 。可以看到,在这个经典的encoder-decoder模型中,并没有图的参与。

 

⒉模型框架

如下图1所示为本文提出的CCM模型框架。

图1 CCM模型框架

如图1所示,基于n个词输入,会输出n个词作为回复,模型的目的就是预估这么一个概率分布: ,即将图信息 G 加入到概率分布的计算中。在信息读取时,根据每个输入的词x,找到常识知识图谱中对应的子图(若没有对应的子图,则会生成一个特殊的图Not_A_Fact),每个子图又包含若干三元组。

⒊知识编译模块

如图2所示,为如何利用图信息编译post的示意图。

图2 知识编译模块

如图所示,当编译到“rays”时,会把这个词在知识图谱中相关的子图得到(图2最上的黄色高两部分),并生成子图的向量。每一个子图都包含了key entity(即这里的rays),以及这个“rays”的邻居实体和相连关系。对于词“of”,由于无法找到对应的子图,所以就采用特殊子图Not_A_Fact来编译。之后,采用基于静态注意力机制,CCM会将子图映射为向量,然后把词向量 w(x_t) 和 g_i 拼接为 ,并将这个替换传统encoder-decoder中的 e(x_t) 进行GRU计算。

对于静态图注意力机制,CCM是将子图中所有的三元组都考虑进来,而不是只计算一个三元组,这也是该模型的一个创新点

⒋知识生成模块

如下图3所示,为如何利用图信息生成回复的示意图。

图3 知识生成模块

在生成时,不同于静态图注意力机制,模型会读取所有相关的子图,而不是当前词对应的子图,而在读取时,读取注意力最大的就是图中粉色高亮的部分。生成时,会根据计算结果,来选择是生成通用字(generic word)还是子图中的实体。

⒌损失函数

损失函数为预期输出与实际输出的交叉熵,除此之外,为了监控选择通用词还是实体的概率,又增加了一个交叉熵。

实验

⑴ 实验相关细节

常识性知识图谱选用了ConceptNet,对话数据集选用了reddit的一千万条数据集,如果一个post-response不能以一个三元组表示(一个实体出现于post,另一个出现于response),就将这个数据去除。然后对剩下的对话数据,分为四类,一类是高频词,即每一个post的每一个词,都是最高频的25%的词;一类是中频词,即25%-75%的词;一类是低频词,即75%-100%的词;最后一类是OOV词,每一个post包含了OOV的词。

而基线系统选择了如下三个:只从对话数据中生成response的seq2seq模型、存储了以TransE形式表示知识图谱的MemNet模型、从三元组中copy一个词或生成通用词的CopyNet模型。

而选用metric的时候,采用了刻画回复内容是否语法正确且贴近主题的perplexity,以及有多少个知识图谱实体被生成的entity score。

⑵ 实验结果

如下图4所示,为根据perplexity和entity score进行的性能比较,可见CCM的perplexity最低,且选取entity的数量最多。并且,在低频词时,选用的entity更多。这表示在训练时比较罕见的词(实体)会需要更多的背景知识来生成答复。

图4 CCM与基线系统对比结果

另外,作者还采用众包的方式,来人为审核response的质量,并采用了两种度量值appropriateness(内容是否语法正确,是否与主题相关,是否有逻辑)与informativeness(内容是否提供了post之外的新信息)。如下图5所示,为基于众包的性能比较结果。

图5 CCM与基线系统基于众包的对比结果

从图5中可见,CCM对于三个基线系统来说,都有将近60%的回复是更优的。并且,在OOV的数据集上,CCM比seq2seq高出很多,这是由于CCM对于这些低频词或未登录词,可以用知识图谱去补全,而seq2seq没有这样的知识来源。

如下图6所示,当在post中遇到未登录词“breakable”时,seq2seq和MemNet都只能输出一些通用的、模棱两可的、毫无信息量的回复。CopyNet能够利用知识图谱输出一些东西,但是并不合适。而CCM却可以输出一个合理的回复。

图6 case study

总结

本文提出了一种结合知识图谱信息的encoder-decoder方法,引入静态/动态图注意力机制有效地改善了对话系统中response的质量。通过自动的和基于众包的形式进行性能对比,CCM模型都是优于基线系统的。

这篇关于###好好好#######论文浅尝 | 基于图注意力的常识对话生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967588

相关文章

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma