论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理

本文主要是介绍论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转载自公众号:浙大KG。                                                                       


笔记整理:陈名杨,浙江大学在读博士

发表会议:EMNLP-2019

论文链接:https://arxiv.org/abs/1909.01515

开源代码:https://github.com/AnselCmy/MetaR


640?wx_fmt=png本文主要解决知识图谱中少样本链接预测的问题,具体来说,就是在仅观测到某个关系的少量三元组后,预测该关系的其他三元组,也就是对该关系进行链接预测。针对该问题,我们提出了一个元关系学习框架MetaR(Meta Relational Learning)融合元学习和知识图谱嵌入的方法,通过转移关系特定元信息(relation-specific meta information)从而解决知识图谱少样本链接预测的问题。本篇工作已经被EMNLP-2019接收。


知识图谱(KG)中包含了大量形如(head, relation, tail)的三元组,尽管如此,知识图谱仍然存在不完整性的问题,因此需要进行知识图谱的补全,其中一个很重要的方法就是链接预测。 知识图谱嵌入(Knowledge Graph Embedding)是完成链接预测的一种有效方法,但其有效性依赖于足够的训练样本,因此在知识图谱中对于某一个关系的训练样本较少时,对于该关系的嵌入并不能得到充分的学习,所以完成链接预测的效果也会很差。 但是在真实的情况中,少样本的问题广泛存在于知识图谱中。 例如在Wikidata中,大约有10%的关系的三元组数量少于10个。 我们在这里把仅有少量三元组的关系称为少样本关系(few-shot relations),本篇文章主要关注少样本链接预测,也就是在仅知道K个关于关系r的三元组的情况下,给定头实体h和关系r,预测尾实体t,通常K非常小,例如1、3、5。

下表为知识图谱的单样本链接预测任务的训练和测试任务举例:
640?wx_fmt=png
单样本链接预测的问题可以解释成,根据支持集(support)中的关于该关系的一个样本,从而对查询集(query)中的关于该关系的缺失了尾实体的三元组进行链接预测。
下图描述了一个三样本链接预测(3-shot link prediction)。 也可以看出MetaR解决少样本链接预测的思路,其中最重要的思想在于使用在不同任务(across tasks)之间共享的relational learner,在一个具体的任务(within one task)中,从少量的关于某个关系的三元组中抽取出关系特定元信息,用于该关系的链接预测。 其中,关系特定元信息包含两个部分,关系元(relation meta)和梯度元(gradient meta),其中关系元是连接头实体和尾实体的关系的高阶表示,梯度元则为关系元的梯度。

640?wx_fmt=png

具体的模型分为两个部分,关系元学习器(Relation-Meta Learner)和嵌入学习器(Embedding Leaner)。关系元学习器是根据支持集的头实体和尾实体的向量表示得到两个实体间的关联,也就是关系元;嵌入学习器计算在支持集和查询集中,送入的头尾实体二元组和计算出的关系元的真值,类似于在做知识图谱嵌入时的得分函数,同时在支持集的阶段通过该真值而计算出的关系元的梯度作梯度元从而更新关系元。整个流程如下:
640?wx_fmt=png
其中R为关系元,G为梯度元。
在实验阶段我们使用了NELL-One和Wiki-One,这两个数据集是在发表于MENLP-2018的One-Shot Relational Learning for Knowledge Graphs中提出,其中该文章提出的GMatching方法中需要使用一个不包含训练/验证/测试任务的关系的背景知识图谱(Background KG),但是我们提出的方法并不依赖于类似的背景知识图谱,所以我们对数据集进行了多种的不同处理,具体解释如下:
640?wx_fmt=png
在不同的数据集设定下进行实验,和GMatching对比都是公平的,因为这并没有改变少样本的设定,也没有更改数据集的总量,仅仅是不同的背景知识图谱使用方法。

实验中我们验证了: MetaR在少样本链接预测的任务上是否优于之前的模型; 关系特定元信息在整个模型中的贡献; MetaR在做少样本链接预测时是否有什么要求。 首先我们先把我们的模型和GMatching在NELL-One和Wiki-One上进行对比,从下表中可以看出,我们的方法在NELL-One、Wiki-One上和1-shot、5-shot的结果都要好于GMatching。
640?wx_fmt=png
并且我们进行了模型简化测试(ablation study),分别去掉梯度元(-g),去掉关系元和梯度元(-g-r),以下是在NELL-One进行单样本链接预测的Hit@10的结果,去掉相关部分后实验结果都大幅降度,说明了关系特定元信息的重要性。
640?wx_fmt=png
最后我们发现在实验结果上,NELL-One在BG:In-Train的数据集设定下实验结果更好, Wiki-One在BG:Pre-Train设定下的结果更好,我们对两个数据集进行分析后,认为是数据集的实体稀疏性和训练任务的数量会对实验结果产生影响。

本文对我们的工作仅进行了简要的分析,对本文感兴趣的读者请阅读论文了解更多细节。


OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

这篇关于论文浅尝 | Meta Relational Learning: 基于元关系学习的少样本知识图谱推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851135

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学