论文浅尝 | 面向知识图谱补全的共享嵌入神经网络模型

本文主要是介绍论文浅尝 | 面向知识图谱补全的共享嵌入神经网络模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文笔记整理:谭亦鸣,东南大学博士生,研究方向为跨语言知识图谱问答。


640?wx_fmt=png

来源:CIKM’2018

链接:http://delivery.acm.org/10.1145/3280000/3271704/p247-guan.pdf?ip=121.249.15.96&id=3271704&acc=ACTIVE%20SERVICE&key=BF85BBA5741FDC6E%2EEEBE655830483280%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1553323826_2f92f0c5be62fc57d71a8cc02bf2335b

 

Introduction

知识图谱补全(KGCknowledge graphcompletion)是一种自动建立图谱内部知识关联的工作,目标是补全图谱中缺失的三元组信息。对于这个问题,常见的方法分为基于矩阵以及基于翻译等两类。随着神经网络方法的普及,本文提出一种共享嵌入的神经网络模型用于处理KGC问题。

 

Motivation

  1. 作者认为在补全任务中,头实体,关系和尾实体三者的训练数据存在一定差异性,而现有方法没有区分头尾实体及关系预测等三个问题做明确区分。

  2. 对于同一知识图谱的头实体,关系和尾实体补全,其对应的图谱知识空间可以通用,因此在图谱表示学习部分,使用shared策略是一个较好的方式

  3. 从技术角度,使用神经网络方法可以较好的模拟推理预测的过程。


Model

640?wx_fmt=png

1 是本文所提出的KGC模型框架,作者将框架划分为以下四个部分:

  1. 三元组的批量预处理

  2. 知识图谱的Shared embeddings表示学习

  3. 独立的头尾实体及关系预测子模型训练与融合

  4. 联合损失函数构成

整个KGC的流程可以描述如下:

  1. 将训练数据中的完整三元组(知识图谱)划分批量后作为模型的输入

  2. 对于输入的三元组,分别训练得到实体(包括头尾实体)嵌入矩阵与关系嵌入矩阵(embeddings

  3. 将头尾实体及关系embeddings分别输入到三个预测模型中(头实体预测(?, r, t),关系预测(h, ?, t),尾实体预测(h, r, ?)

        预测子模型具有相似的结构如下图,模型输入关系向量与实体向量后,进入n层全连接层,得到预测向量,再经过一个sigmoid(或者softmax)层,输出预测标签向量。

640?wx_fmt=png

打分函数(Score function

以头实体预测子模型为例,其打分函数形式如下:

640?wx_fmt=png

损失函数(Loss function

            依据上述框架,对于给定的某个三元组(h, r, t),可以得到三个对应的预测标签向量Ph, Pr, Pt

            目标标签向量则可以定义为:

640?wx_fmt=png


            根据上述定义可以得到三者的平滑目标向量为:

640?wx_fmt=png


            因此,各子模型损失函数形式可以描述如下:

640?wx_fmt=png


            联合损失函数则是将三个子模型的打分函数进行相加融合得到:

640?wx_fmt=png


Experiment

本工作实验使用的数据来源于WN18以及FB15K,具体统计信息如表1所示:

640?wx_fmt=png


实体预测实验结果如下:


640?wx_fmt=png

关系预测实验结果如下:

640?wx_fmt=png


Conclusion

总的来说,本文工作在实验结果上确实表现出对以往方法性能的提升,但是对于头尾关系预测的子任务划分依据缺少较为详细的说明,故并不能明确任务划分做法的合理性,也没有不划分子模型的版本的对比测试。

 



OpenKG


开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

这篇关于论文浅尝 | 面向知识图谱补全的共享嵌入神经网络模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851156

相关文章

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选