大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。 现代 CPU 通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。 CPU 服务器通常配备多级高速缓存(
《原始论文:Attention Is All You Need》 一、Transformer 概述 在2017年《Attention Is All You Need》论文里第一次提出Transformer之前,常用的序列模型都是基于卷积神经网络或者循环神经网络,表现最好的模型也是基于encoder- decoder框架的基础加上attention机制。 2018年10月,Google发出一篇
Rayon - 数据并行计算库 Rayon 是一个Rust的数据并行计算库。它非常轻巧,可以轻松地将顺序计算转换为并行计算。同时保证不会有数据争用情况出现。 并行迭代器 使用Rayon,可以轻松地将顺序迭代器转换为并行迭代器:通常,只需将您的foo.iter()调用更改为foo.par_iter(),其余则由Rayon完成: use rayon::prelude::*;fn sum_of_sq