python并发与并行(二) ———— 用线程执行阻塞式IO,但不要用它做并行计算

2024-08-29 05:44

本文主要是介绍python并发与并行(二) ———— 用线程执行阻塞式IO,但不要用它做并行计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python语言的标准实现叫作CPython,它分两步来运行Python程序。首先解析源代码文本,并将其编译成字节码(bytecode)。字节码是一种底层代码,可以把程序表示成8位的指令(从Python 3.6开始,这种底层代码实际上已经变成16位了,所以应该叫作wordcode才对,但基本原理依然相同)。然后,CPython采用基于栈的解释器来运行字节码。这种字节码解释器在执行Python程序的过程中,必须确保相关的状态不受干扰,所以CPython会用一种叫作全局解释器锁(global interpreter lock,GIL)的机制来保证这一点。

GIL实际上就是一种互斥锁(mutual-exclusion lock,mutex),用来防止CPython的状态在抢占式的多线程环境(preemptive multithreading)之中受到干扰,因为在这种环境下,一条线程有可能突然打断另一条线程抢占程序的控制权。如果这种抢占行为来得不是时候,那么解释器的状态(例如为垃圾回收工作而设立的引用计数等)就会遭到破坏。所以,CPython要通过GIL阻止这样的动作,以确保它自身以及它的那些C扩展模块能够正确地执行每一条字节码指令。
但是,GIL会产生一个很不好的影响。在C++与Java这样的语言里面,如果程序之中有多个线程能够分头执行任务,那么就可以把CPU的各个核心充分地利用起来。尽管Python也支持多线程,但这些线程受GIL约束,所以每次或许只能有一条线程向前推进,而无法实现多头并进。所以,想通过多线程做并行计算或是给程序提速的开发者,恐怕要失望了。

我们用一段计算量很大的任务来看一下python在用多线程执行计算密集型任务时的表现。


# 因数分解算法
def factorize(number):for i in range(1,number+1):if number %i==0:yield iimport timenumbers = [2139079, 1214759, 1516637, 1852285]
start = time.time()for number in numbers:list(factorize(number))end = time.time()
delta = end - start
print(f'Took {delta:.3f} seconds')from threading import Threadclass FactorizeThread(Thread):def __init__(self, number):super().__init__()self.number = numberdef run(self):self.factors = list(factorize(self.number))start = time.time()threads = []
for number in numbers:thread = FactorizeThread(number)thread.start()threads.append(thread)# thread.join()方法的作用是等待线程完成。当你启动一个线程后,这个线程会异步执行。如果你希望主线程(通常是执行thread.start()的线程)等待这个新线程完成其任务后再继续执行,你就需要调用thread.join()。
# 如果不调用thread.join(),主线程可能会在其他线程完成之前继续执行,这可能导致一些不可预测的行为或资源访问冲突,特别是当多个线程需要访问共享资源时。通过调用join(),你确保了主线程会等待每个工作线程完成其执行,从而实现线程间的同步。
for thread in threads:thread.join()end = time.time()
delta = end - start
print(f'Took {delta:.3f} seconds')

Output:

Took 0.179 seconds
Took 0.158 seconds

我们看结果,多线程并没有比单线程快很多。

下面我们看个IO密集型的任务。


import select
import socket
import time
from threading import Thread#select.select,这是一个系统调用,用于监视文件描述符集合的变化情况。具体来说,select 函数可以监视三种类型的文件描述符集合:
#可读集合(readfds):等待数据变得可读(例如,网络套接字上有数据可读)的文件描述符集合。
#可写集合(writefds):等待数据变得可写(例如,套接字缓冲区有足够的空间可以发送数据)的文件描述符集合。
#异常集合(exceptfds):等待异常情况(如带外数据到达)的文件描述符集合。
#select.select 函数的最后一个参数是一个超时值,表示 select 函数等待事件发生的最长时间。在这个例子中,超时值被设置为 0.1 秒,这意味着 select 会在 0.1 秒后超时,无论是否有事件发生。
def slow_systemcall():select.select([socket.socket()], [], [], 0.1)start = time.time()for _ in range(5):slow_systemcall()end = time.time()
delta = end - start
print(f'Took {delta:.3f} seconds')start = time.time()threads = []
for _ in range(5):thread = Thread(target=slow_systemcall)thread.start()threads.append(thread)# 用此函数来模拟在执行系统调用时,我们还同时在做其他的事情
def compute_helicopter_location(index):print('Running compute helicopter location ')for i in range(5):compute_helicopter_location(i)for thread in threads:thread.join()end = time.time()
delta = end - start
print(f'Took {delta:.3f} seconds')

Output:

Took 0.517 seconds
Running compute helicopter location 
Running compute helicopter location 
Running compute helicopter location 
Running compute helicopter location 
Running compute helicopter location 
Took 0.108 seconds

与依次执行系统调用的那种写法相比,这种写法的速度几乎能达到原来的5倍。这说明,尽管那5条线程依然受GIL制约,但它们所发起的系统调用是可以各自向前执行的。GIL只不过是让Python内部的代码无法平行推进而已,至于系统调用,则不会受到影响,因为Python线程在即将执行系统调用时,会释放GIL,待完成调用之后,才会重新获取它。

与依次执行系统调用的那种写法相比,这种写法的速度几乎能达到原来的5倍。这说明,尽管那5条线程依然受GIL制约,但它们所发起的系统调用是可以各自向前执行的。GIL只不过是让Python内部的代码无法平行推进而已,至于系统调用,则不会受到影响,因为Python线程在即将执行系统调用时,会释放GIL,待完成调用之后,才会重新获取它。

这篇关于python并发与并行(二) ———— 用线程执行阻塞式IO,但不要用它做并行计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117004

相关文章

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da