python并行计算之pool.apply_async()与pool.imap()的异同点

2024-09-05 10:20

本文主要是介绍python并行计算之pool.apply_async()与pool.imap()的异同点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 1. 框架和技术概要: 🎨🖥️
      • 2. 相似点: 🧩💡
      • 3. 不同点: 📊👣
      • 4. 使用示例: 😊👨‍💻
      • 5. 总结: 🎉

1. 框架和技术概要: 🎨🖥️

multiprocessing 模块中的 pool.apply_async()pool.imap() 都用于并行处理,但它们在使用方式和返回结果上有所不同。

2. 相似点: 🧩💡

  1. 并行处理: 两者都用于在多个进程中并行执行函数。
  2. 适用于多核处理: 都可以充分利用多核 CPU 来加速计算。

3. 不同点: 📊👣

特性pool.apply_async()pool.imap()
返回类型返回一个 AsyncResult 对象,可以通过 get() 方法获取结果返回一个迭代器,可以逐个获取结果
执行方式提交任务并立即返回,适合独立任务适合处理可迭代对象中的每个元素,按顺序返回结果
阻塞行为不会阻塞主线程,可以同时提交多个任务迭代器会按顺序阻塞,直到结果可用
错误处理可通过 AsyncResult 对象捕获异常迭代器会在遍历时抛出异常

4. 使用示例: 😊👨‍💻

  1. pool.apply_async():
from multiprocessing import Pooldef square(x):return x * xwith Pool(processes=4) as pool:results = [pool.apply_async(square, (i,)) for i in range(10)]output = [result.get() for result in results]print(output)

pool = multiprocessing.Pool(processes=5)
results, processes = [], []
for file_path in ans_file_paths:processes.append(pool.apply_async(cal_max_speed, args=(file_path,)))
for processe in tqdm(processes):results.append(processe.get())
pool.close()
pool.join()
  1. pool.imap():
from multiprocessing import Pooldef square(x):return x * xwith Pool(processes=4) as pool:output = pool.imap(square, range(10))print(list(output))

或者

with multiprocessing.Pool(processes=processes) as pool:results = list(tqdm(pool.imap(cal_max_speed, file_generator(root_dir, ids_set)),total=len(ids_set)))  

5. 总结: 🎉

  • 如果需要立即提交多个独立任务,并在之后获取结果,可以使用 apply_async()
  • 如果处理的是一个可迭代对象,并希望按顺序获取结果,imap() 是更好的选择。

这篇关于python并行计算之pool.apply_async()与pool.imap()的异同点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138683

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At