CUDA:用并行计算的方法对图像进行直方图均衡处理

2024-09-07 03:58

本文主要是介绍CUDA:用并行计算的方法对图像进行直方图均衡处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(一)目的

将所学算法运用于图像处理中。

(二)内容

用并行计算的方法对图像进行直方图均衡处理。

要求:

  1. 利用直方图均衡算法处理lena_salt图像

版本1:CPU实现

版本2:GPU实现 

实验步骤一 软件设计分析:

  • 数据类型:

根据实验要求,本实验的数据类型为一个256*256*8的整型矩阵,其中元素的值为256*256个0-255的灰度值。

  • 存储方式:

图像在内存中的存储方式主要是以二维矩阵的方式进行存储,这里的lena_salt图像是一个256*256的矩阵,每一个元素用一个字节来存储像素值。

矩阵在内存中的存储按照行列优先可以分为两种方式,一种是行优先的存储方式,一种是按照列优先的方式。

这两种存储方式在访问对应的位置的数据的时候有很大的差别。在cuda内部,矩阵默认是按照列优先的方式存储,如果要使用cuda device函数,就必须考虑存储方式的问题,有的时候可能需要我们队存储方式进行装换。但是无论是用那种存储方式,最终在内存中都是顺序存储的。

三.GPU程序的blockthreads的相关设置:

       本实验提供的英伟达实验平台每一个Grid可以按照一维或者二维的方式组织,每一个Block可以按照一维,二维或者三维的方式进行组织。每一个block最多只能有1536个线程。内核函数使用的线程总量也受到设备本身的限制。

对于本次实验,针对上文中提到的几个任务,block和threads的组织方式都可以描述为:

dim3 threadsPerBlock(16, 16);

  dim3 blocksPerGrid((img_in.w + 15) / 16, (img_in.h + 15) / 16);

实验步骤二 实验设备:

本地设备:PC机+Windows10操作系统

  Putty远程连接工具

  PsFTP远程文件传输工具

远程设备:NVIDIA-SMI 352.79

  Driver Version:352.79

 

实验步骤三 CPU计算代码:

void cpu_ histogram_equalization_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h){

    //数据定义

    float pixel_value[256];

    float P_pixel_value[256];

    float Sum_P_pixel_value[256];

    for (int i = 0; i < 256; i++)

        pixel_value[i] = 0;

    //统计直方图

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            pixel_value[img_in[i * img_w + j]]++;

            //img_out[i*img_w+j] = pixel_out;

        }

    }

    //概率直方图

    for (int i = 0; i < 256; i++)

        P_pixel_value[i] = pixel_value[i] / 256 / 256;

    //前项概率求和

    for (int i = 0; i < 256; i++)

    {

        float sum = 0.0;

        for (int j = 0; j < i; j++)

            sum += P_pixel_value[j];

        Sum_P_pixel_value[i] = sum;

    }

    //均衡化

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            int pixel_out = int(Sum_P_pixel_value[img_in[i * img_w + j]] * 256 + 0.5);

            img_out[i*img_w + j] = pixel_out;

        }

    }

}

实验步骤四 GPU计算代码:

  1. 新增数据定义及初始化部分

float *pixel_value_h = new float[256];

    float *P_pixel_value_h = new float[256];

    float *Sum_P_pixel_value_h = new float[256];

    for (int i = 0; i < 256; i++)

    {

        pixel_value_h[i] = 0.0;

        P_pixel_value_h[i] = 0.0;

        Sum_P_pixel_value_h[i] = 0.0;

    }

    float *pixel_value_d;

    float *P_pixel_value_d;

    float *Sum_P_pixel_value_d;

    cudaMalloc((void **)&pixel_value_d, 256 * sizeof(double));

    cudaMalloc((void **)&P_pixel_value_d, 256 * sizeof(float));

    cudaMalloc((void **)&Sum_P_pixel_value_d, 256 * sizeof(float));

    cudaMemcpy(pixel_value_d, pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(P_pixel_value_d, P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(Sum_P_pixel_value_d, Sum_P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

  1. 函数定义部分

//统计直方图

__global__ void gpu_histogram_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    if ((row >= 0) && (row < img_h) && (col >= 0) && (col < img_w))

        //pixel_value[img_in[row*img_w + col]]++;

        atomicAdd(&pixel_value[img_in[row*img_w + col]], 1.0);

}

//计算概率

__global__ void gpu_probability_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value, float *P_pixel_value)

{

    if ((blockIdx.x == 0) && (blockIdx.y == 0) && (threadIdx.x == 0) && (threadIdx.y == 0))

        for (int i = 0; i < 256;i++)

            P_pixel_value[i] = pixel_value[i] / 256 /256;

}

//计算概率前项和

__global__ void gpu_sum_probability_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *P_pixel_value, float *Sum_P_pixel_value)

{

    __shared__ float sharedM[256];

 

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    unsigned int bid = blockIdx.y * gridDim.x + blockIdx.x;

    unsigned int bid = blockIdx.x;

    unsigned int tid = threadIdx.x;

    unsigned int count = 1;

    sharedM[tid] = P_pixel_value[tid];

    __syncthreads();

    if (bid % 2 == 0)

    {

        for (unsigned int stride = 1; stride < bid; stride *= 2)

        {

            __syncthreads();

            if (tid % (2*stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }  

    else

    {

        for (unsigned int stride = 1; stride < bid + 1; stride *= 2)

        {

            __syncthreads();

            if (tid % (2 * stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }

    if (tid == 0)

        Sum_P_pixel_value[blockIdx.x] = sharedM[0];

}

//均衡化

__global__ void gpu_equilibrium_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *Sum_P_pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    img_out[row*img_w + col] = int(Sum_P_pixel_value[img_in[row*img_w + col]] * 256 + 0.5);

}

  1. 函数调用

 

gpu_histogram_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d);

    gpu_probability_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d, P_pixel_value_d);

    gpu_sum_probability_kernel << <256, 256 >> >(d_img_in, d_img_out, img_in.w, img_in.h, P_pixel_value_d, Sum_P_pixel_value_d);

    gpu_equilibrium_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, Sum_P_pixel_value_d);

 

实验步骤五 观察输出结果:

图1 原图像

 

  1. 版本1:CPU实现处理结果

 

图2 CPU实现处理效果

 

 

图3 CPU实现处理时间

 

2,版本2:GPU实现处理结果

图4 CPU实现处理效果

 

图5 CPU实现处理时间

3,处理过程中的数据

图6 直方图统计结果

图7 概率计算结果

 

图8 概率前项求和

 

 

实验结论:

 

cpu程序计算所需时间:

   版本1,CPU实现程序计算所需时间:1.6711328ms

gpu程序计算所需时间:

   版本2,GPU实现程序计算所需时间:2.950976ms

 

总结

之前的实验都是讲所有的代码写在一个kernel函数里面,本次实验突发奇想的采用多个kernel函数对直方图均衡的每一步分别进行处理,也算是一种新的尝试吧。在实验的过程中,由于远程端的运行环境导致调试代码,特别是排查错误显得很艰难。我在这里才取的解决办法就是将处理完的数据传回host端,然后打印出来,观察输出结果是否符合预期。这样就很容易发现处理的过程中是哪一步出了问题,方便了错误排查。

这篇关于CUDA:用并行计算的方法对图像进行直方图均衡处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143994

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

mss32.dll文件丢失怎么办? 电脑提示mss32.dll丢失的多种修复方法

《mss32.dll文件丢失怎么办?电脑提示mss32.dll丢失的多种修复方法》最近,很多电脑用户可能遇到了mss32.dll文件丢失的问题,导致一些应用程序无法正常启动,那么,如何修复这个问题呢... 在电脑常年累月的使用过程中,偶尔会遇到一些问题令人头疼。像是某个程序尝试运行时,系统突然弹出一个错误提

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio