CUDA:用并行计算的方法对图像进行直方图均衡处理

2024-09-07 03:58

本文主要是介绍CUDA:用并行计算的方法对图像进行直方图均衡处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(一)目的

将所学算法运用于图像处理中。

(二)内容

用并行计算的方法对图像进行直方图均衡处理。

要求:

  1. 利用直方图均衡算法处理lena_salt图像

版本1:CPU实现

版本2:GPU实现 

实验步骤一 软件设计分析:

  • 数据类型:

根据实验要求,本实验的数据类型为一个256*256*8的整型矩阵,其中元素的值为256*256个0-255的灰度值。

  • 存储方式:

图像在内存中的存储方式主要是以二维矩阵的方式进行存储,这里的lena_salt图像是一个256*256的矩阵,每一个元素用一个字节来存储像素值。

矩阵在内存中的存储按照行列优先可以分为两种方式,一种是行优先的存储方式,一种是按照列优先的方式。

这两种存储方式在访问对应的位置的数据的时候有很大的差别。在cuda内部,矩阵默认是按照列优先的方式存储,如果要使用cuda device函数,就必须考虑存储方式的问题,有的时候可能需要我们队存储方式进行装换。但是无论是用那种存储方式,最终在内存中都是顺序存储的。

三.GPU程序的blockthreads的相关设置:

       本实验提供的英伟达实验平台每一个Grid可以按照一维或者二维的方式组织,每一个Block可以按照一维,二维或者三维的方式进行组织。每一个block最多只能有1536个线程。内核函数使用的线程总量也受到设备本身的限制。

对于本次实验,针对上文中提到的几个任务,block和threads的组织方式都可以描述为:

dim3 threadsPerBlock(16, 16);

  dim3 blocksPerGrid((img_in.w + 15) / 16, (img_in.h + 15) / 16);

实验步骤二 实验设备:

本地设备:PC机+Windows10操作系统

  Putty远程连接工具

  PsFTP远程文件传输工具

远程设备:NVIDIA-SMI 352.79

  Driver Version:352.79

 

实验步骤三 CPU计算代码:

void cpu_ histogram_equalization_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h){

    //数据定义

    float pixel_value[256];

    float P_pixel_value[256];

    float Sum_P_pixel_value[256];

    for (int i = 0; i < 256; i++)

        pixel_value[i] = 0;

    //统计直方图

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            pixel_value[img_in[i * img_w + j]]++;

            //img_out[i*img_w+j] = pixel_out;

        }

    }

    //概率直方图

    for (int i = 0; i < 256; i++)

        P_pixel_value[i] = pixel_value[i] / 256 / 256;

    //前项概率求和

    for (int i = 0; i < 256; i++)

    {

        float sum = 0.0;

        for (int j = 0; j < i; j++)

            sum += P_pixel_value[j];

        Sum_P_pixel_value[i] = sum;

    }

    //均衡化

    for (int i = 0; i<img_h; i++)

    {

        for (int j = 0; j<img_w; j++)

        {

            int pixel_out = int(Sum_P_pixel_value[img_in[i * img_w + j]] * 256 + 0.5);

            img_out[i*img_w + j] = pixel_out;

        }

    }

}

实验步骤四 GPU计算代码:

  1. 新增数据定义及初始化部分

float *pixel_value_h = new float[256];

    float *P_pixel_value_h = new float[256];

    float *Sum_P_pixel_value_h = new float[256];

    for (int i = 0; i < 256; i++)

    {

        pixel_value_h[i] = 0.0;

        P_pixel_value_h[i] = 0.0;

        Sum_P_pixel_value_h[i] = 0.0;

    }

    float *pixel_value_d;

    float *P_pixel_value_d;

    float *Sum_P_pixel_value_d;

    cudaMalloc((void **)&pixel_value_d, 256 * sizeof(double));

    cudaMalloc((void **)&P_pixel_value_d, 256 * sizeof(float));

    cudaMalloc((void **)&Sum_P_pixel_value_d, 256 * sizeof(float));

    cudaMemcpy(pixel_value_d, pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(P_pixel_value_d, P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(Sum_P_pixel_value_d, Sum_P_pixel_value_h, 256 * sizeof(float), cudaMemcpyHostToDevice);

  1. 函数定义部分

//统计直方图

__global__ void gpu_histogram_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    if ((row >= 0) && (row < img_h) && (col >= 0) && (col < img_w))

        //pixel_value[img_in[row*img_w + col]]++;

        atomicAdd(&pixel_value[img_in[row*img_w + col]], 1.0);

}

//计算概率

__global__ void gpu_probability_sta_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *pixel_value, float *P_pixel_value)

{

    if ((blockIdx.x == 0) && (blockIdx.y == 0) && (threadIdx.x == 0) && (threadIdx.y == 0))

        for (int i = 0; i < 256;i++)

            P_pixel_value[i] = pixel_value[i] / 256 /256;

}

//计算概率前项和

__global__ void gpu_sum_probability_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *P_pixel_value, float *Sum_P_pixel_value)

{

    __shared__ float sharedM[256];

 

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    unsigned int bid = blockIdx.y * gridDim.x + blockIdx.x;

    unsigned int bid = blockIdx.x;

    unsigned int tid = threadIdx.x;

    unsigned int count = 1;

    sharedM[tid] = P_pixel_value[tid];

    __syncthreads();

    if (bid % 2 == 0)

    {

        for (unsigned int stride = 1; stride < bid; stride *= 2)

        {

            __syncthreads();

            if (tid % (2*stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }  

    else

    {

        for (unsigned int stride = 1; stride < bid + 1; stride *= 2)

        {

            __syncthreads();

            if (tid % (2 * stride) == 0)

                sharedM[tid] += sharedM[tid + stride];

        }

    }

    if (tid == 0)

        Sum_P_pixel_value[blockIdx.x] = sharedM[0];

}

//均衡化

__global__ void gpu_equilibrium_kernel(uchar * img_in, uchar * img_out, int img_w, int img_h, float *Sum_P_pixel_value)

{

    int row = blockDim.y * blockIdx.y + threadIdx.y;

    int col = blockDim.x * blockIdx.x + threadIdx.x;

    img_out[row*img_w + col] = int(Sum_P_pixel_value[img_in[row*img_w + col]] * 256 + 0.5);

}

  1. 函数调用

 

gpu_histogram_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d);

    gpu_probability_sta_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, pixel_value_d, P_pixel_value_d);

    gpu_sum_probability_kernel << <256, 256 >> >(d_img_in, d_img_out, img_in.w, img_in.h, P_pixel_value_d, Sum_P_pixel_value_d);

    gpu_equilibrium_kernel << <blocksPerGrid, threadsPerBlock >> >(d_img_in, d_img_out, img_in.w, img_in.h, Sum_P_pixel_value_d);

 

实验步骤五 观察输出结果:

图1 原图像

 

  1. 版本1:CPU实现处理结果

 

图2 CPU实现处理效果

 

 

图3 CPU实现处理时间

 

2,版本2:GPU实现处理结果

图4 CPU实现处理效果

 

图5 CPU实现处理时间

3,处理过程中的数据

图6 直方图统计结果

图7 概率计算结果

 

图8 概率前项求和

 

 

实验结论:

 

cpu程序计算所需时间:

   版本1,CPU实现程序计算所需时间:1.6711328ms

gpu程序计算所需时间:

   版本2,GPU实现程序计算所需时间:2.950976ms

 

总结

之前的实验都是讲所有的代码写在一个kernel函数里面,本次实验突发奇想的采用多个kernel函数对直方图均衡的每一步分别进行处理,也算是一种新的尝试吧。在实验的过程中,由于远程端的运行环境导致调试代码,特别是排查错误显得很艰难。我在这里才取的解决办法就是将处理完的数据传回host端,然后打印出来,观察输出结果是否符合预期。这样就很容易发现处理的过程中是哪一步出了问题,方便了错误排查。

这篇关于CUDA:用并行计算的方法对图像进行直方图均衡处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143994

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ