Python 中考虑 concurrent.futures 实现真正的并行计算

2024-09-08 00:44

本文主要是介绍Python 中考虑 concurrent.futures 实现真正的并行计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 中考虑 concurrent.futures 实现真正的并行计算

思考,如何将代码所要执行的计算任务划分成多个独立的部分并在各自的核心上面平行地运行。

Python 的全局解释器锁(global interpreter lock,GIL)导致没办法用线程来实现真正的并行​,所以先把这种方案排除掉。另一种常见的方案,是把那些对性能要求比较高的(performance-critical)代码用 C 语言重写成扩展模块。然而,用 C 语言重写 Python 代码,代价是比较高的。所以,还是要能够在 Python 语言自身的范围内,解决这种复杂的并行计算问题。

Python 内置的 multiprocessing 模块提供了多进程机制,这种机制很容易通过内置的 concurrent.futures 模块来使用。这种方案可以启动许多条子进程(child process)​,这些进程是独立于主解释器的,它们有各自的解释器与相应的全局解释器锁,因此这些子进程可以平行地运行在 CPU 的各个核心上面。每条子进程都能够充分利用它所在的这个核心来执行运算。这些子进程都有指向主进程的链接,用来接收所要执行的计算任务并返回结果。

例如,现在要用 Python 来执行某种计算量很大的工作,而且想把 CPU 里的各个核心充分利用起来。用下面这个计算最大公约数的函数,来模拟刚才讲的那种工作。

# my_module.py
def gcd(pair):a, b = pairlow = min(a, b)for i in range(low, 0, -1):if a % i == 0 and b % i == 0:return iassert False, 'Not reachable'

如果把有待求解最大公约数的那些元组按照先后顺序交给这个函数去执行,那么程序花费的总时间就会随着元组的数量呈正比例上升,因为根本就没有做平行计算。

# run_serial.py
import timenumbers = [(1963309, 2265973), (2030677, 3814172),(1551645, 2229620), (2039045, 2020802),(1823712, 1924928), (2293129, 1020491),(1281238, 2273782), (3823812, 4237281),(3812741, 4729139), (1292391, 2123811),
]def main():start = time.time()results = list(map(gcd, numbers))end = time.time()delta = end - startprint(f'Took {delta:.3f} seconds')main()# >>>
# Took 0.863 seconds

直接把这种代码分给多条 Python 线程去执行,是不会让程序提速的,因为它们全都受制于同一个 Python 全局解释器锁(GIL)​,无法真正平行地运行在各自的 CPU 核心上面。现在就来演示这一点。使用 concurrent.futures 模块里面的 ThreadPoolExecutor 类,并允许它最多可以启用四条工作线程(根据机器核心数设置)。

# run_threads.py
from concurrent.futures import ThreadPoolExecutor
import timenumbers = [(1963309, 2265973), (2030677, 3814172),(1551645, 2229620), (2039045, 2020802),(1823712, 1924928), (2293129, 1020491),(1281238, 2273782), (3823812, 4237281),(3812741, 4729139), (1292391, 2123811),
]def main():start = time.time()pool = ThreadPoolExecutor(max_workers=4)results = list(pool.map(gcd, numbers))end = time.time()delta = end - startprint(f'Took {delta:.3f} seconds')main()# >>>
# Took 0.846 seconds

由于要启动线程池并和它通信,这种写法比单线程版本还慢。但是请注意,只需要变动一行代码就能让程序出现奇效,也就是把 ThreadPoolExecutor 改成 concurrent.futures 模块里的 ProcessPoolExecutor。这样一改,程序立刻就快了起来。

# run_parallel.py
from concurrent.futures import ProcessPoolExecutor
import timenumbers = [(1963309, 2265973), (2030677, 3814172),(1551645, 2229620), (2039045, 2020802),(1823712, 1924928), (2293129, 1020491),(1281238, 2273782), (3823812, 4237281),(3812741, 4729139), (1292391, 2123811),
]def main():start = time.time()pool = ProcessPoolExecutor(max_workers=4)  # The one changeresults = list(pool.map(gcd, numbers))end = time.time()delta = end - startprint(f'Took {delta:.3f} seconds')if __name__ == '__main__':main()# >>>
# Took 0.464 seconds

程序变得比原来快多了。这是为什么呢?因为 ProcessPool-Executor 类会执行下面这一系列的步骤(当然,这实际上是由 multiprocessing 模块里的底层机制所推动的)​。

  • 1)从包含输入数据的NUMBERS列表里把每个元素取出来,以便交给 map。
  • 2)用 pickle 模块对每个元素做序列化处理,把它转成二进制形式​。
  • 3)将序列化之后的数据,从主解释器所在的进程经由本地 socket 复制到子解释器所在的进程。
  • 4)在子进程里面,用 pickle 模块对数据做反序列化处理,把它还原成 Python 对象。
  • 5)引入包含 gcd 函数的那个 Python 模块。
  • 6)把刚才还原出来的那个对象交给 gcd 函数去处理,此时,其他子进程也可以把它们各自的那份数据交给它们各自的 gcd 函数执行。
  • 7)对执行结果做序列化处理,把它转化成二进制形式。
  • 8)将二进制数据通过 socket 复制到上级进程。
  • 9)在上级进程里面对二进制数据做反序列化处理,把它还原成 Python 对象。
  • 10)把每条子进程所给出的结果都还原好,最后合并到一个 list 里面返回。

从开发者这边来看,这个过程似乎很简单,但实际上,multiprocessing 模块与 Proce-ssPoolExecutor 类要做大量的工作才能实现出这样的并行效果。同样的效果,假如改用其他语言来做,那基本上只需要用一把锁或一项原子操作就能很好地协调多个线程,从而实现并行。但这在 Python 里面不行,所以才考虑通过 ProcessPoolExecutor 来实现。然而这样做的开销很大,因为它必须在上级进程与子进程之间做全套的序列化与反序列化处理。

这个方案对那种孤立的而且数据利用度较高的任务来说,比较合适。所谓孤立(isolated)​,这里指每一部分任务都不需要跟程序里的其他部分共用状态信息。所谓数据利用度较高(high-leverage)​,这里指任务所使用的原始材料以及最终所给出的结果数据量都很小,因此上级进程与子进程之间只需要互传很少的信息就行,然而在把原始材料加工成最终产品的过程中,却需要做大量运算。

如果你面对的计算任务不具备刚才那两项特征,那么使用 ProcessPoolExecutor 所引发的开销可能就会盖过因为并行而带来的好处。在这种情况下,可以考虑直接使用 multiprocessing 所提供的一些其他高级功能,例如共享内存(shared memory)、跨进程的锁(cross-process lock)、队列(queue)以及代理(proxy)等。但是,这些功能都相当复杂,即便两个 Python 线程之间所要共享的进程只有一条,也是要花很大工夫才能在内存空间里面将这些工具安排到位。假如需要共享的进程有很多条,而且还涉及 socket,那么这种代码理解起来会更加困难。

总之,不要刚一上来,就立刻使用跟 multiprocessing 这个内置模块有关的机制,而是可以先试着用 ThreadPoolExecutor 来运行这种孤立且数据利用度较高的任务。把这套方案实现出来之后,再考虑向 ProcessPoolExecutor 方案迁移。如果 ProcessPoolExecutor 方案也无法满足要求,而且其他办法也全都试遍了,那么最后可以考虑直接使用 multiprocessing 模块里的高级功能来编写代码。

这篇关于Python 中考虑 concurrent.futures 实现真正的并行计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146630

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详