Python 中考虑 concurrent.futures 实现真正的并行计算

2024-09-08 00:44

本文主要是介绍Python 中考虑 concurrent.futures 实现真正的并行计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 中考虑 concurrent.futures 实现真正的并行计算

思考,如何将代码所要执行的计算任务划分成多个独立的部分并在各自的核心上面平行地运行。

Python 的全局解释器锁(global interpreter lock,GIL)导致没办法用线程来实现真正的并行​,所以先把这种方案排除掉。另一种常见的方案,是把那些对性能要求比较高的(performance-critical)代码用 C 语言重写成扩展模块。然而,用 C 语言重写 Python 代码,代价是比较高的。所以,还是要能够在 Python 语言自身的范围内,解决这种复杂的并行计算问题。

Python 内置的 multiprocessing 模块提供了多进程机制,这种机制很容易通过内置的 concurrent.futures 模块来使用。这种方案可以启动许多条子进程(child process)​,这些进程是独立于主解释器的,它们有各自的解释器与相应的全局解释器锁,因此这些子进程可以平行地运行在 CPU 的各个核心上面。每条子进程都能够充分利用它所在的这个核心来执行运算。这些子进程都有指向主进程的链接,用来接收所要执行的计算任务并返回结果。

例如,现在要用 Python 来执行某种计算量很大的工作,而且想把 CPU 里的各个核心充分利用起来。用下面这个计算最大公约数的函数,来模拟刚才讲的那种工作。

# my_module.py
def gcd(pair):a, b = pairlow = min(a, b)for i in range(low, 0, -1):if a % i == 0 and b % i == 0:return iassert False, 'Not reachable'

如果把有待求解最大公约数的那些元组按照先后顺序交给这个函数去执行,那么程序花费的总时间就会随着元组的数量呈正比例上升,因为根本就没有做平行计算。

# run_serial.py
import timenumbers = [(1963309, 2265973), (2030677, 3814172),(1551645, 2229620), (2039045, 2020802),(1823712, 1924928), (2293129, 1020491),(1281238, 2273782), (3823812, 4237281),(3812741, 4729139), (1292391, 2123811),
]def main():start = time.time()results = list(map(gcd, numbers))end = time.time()delta = end - startprint(f'Took {delta:.3f} seconds')main()# >>>
# Took 0.863 seconds

直接把这种代码分给多条 Python 线程去执行,是不会让程序提速的,因为它们全都受制于同一个 Python 全局解释器锁(GIL)​,无法真正平行地运行在各自的 CPU 核心上面。现在就来演示这一点。使用 concurrent.futures 模块里面的 ThreadPoolExecutor 类,并允许它最多可以启用四条工作线程(根据机器核心数设置)。

# run_threads.py
from concurrent.futures import ThreadPoolExecutor
import timenumbers = [(1963309, 2265973), (2030677, 3814172),(1551645, 2229620), (2039045, 2020802),(1823712, 1924928), (2293129, 1020491),(1281238, 2273782), (3823812, 4237281),(3812741, 4729139), (1292391, 2123811),
]def main():start = time.time()pool = ThreadPoolExecutor(max_workers=4)results = list(pool.map(gcd, numbers))end = time.time()delta = end - startprint(f'Took {delta:.3f} seconds')main()# >>>
# Took 0.846 seconds

由于要启动线程池并和它通信,这种写法比单线程版本还慢。但是请注意,只需要变动一行代码就能让程序出现奇效,也就是把 ThreadPoolExecutor 改成 concurrent.futures 模块里的 ProcessPoolExecutor。这样一改,程序立刻就快了起来。

# run_parallel.py
from concurrent.futures import ProcessPoolExecutor
import timenumbers = [(1963309, 2265973), (2030677, 3814172),(1551645, 2229620), (2039045, 2020802),(1823712, 1924928), (2293129, 1020491),(1281238, 2273782), (3823812, 4237281),(3812741, 4729139), (1292391, 2123811),
]def main():start = time.time()pool = ProcessPoolExecutor(max_workers=4)  # The one changeresults = list(pool.map(gcd, numbers))end = time.time()delta = end - startprint(f'Took {delta:.3f} seconds')if __name__ == '__main__':main()# >>>
# Took 0.464 seconds

程序变得比原来快多了。这是为什么呢?因为 ProcessPool-Executor 类会执行下面这一系列的步骤(当然,这实际上是由 multiprocessing 模块里的底层机制所推动的)​。

  • 1)从包含输入数据的NUMBERS列表里把每个元素取出来,以便交给 map。
  • 2)用 pickle 模块对每个元素做序列化处理,把它转成二进制形式​。
  • 3)将序列化之后的数据,从主解释器所在的进程经由本地 socket 复制到子解释器所在的进程。
  • 4)在子进程里面,用 pickle 模块对数据做反序列化处理,把它还原成 Python 对象。
  • 5)引入包含 gcd 函数的那个 Python 模块。
  • 6)把刚才还原出来的那个对象交给 gcd 函数去处理,此时,其他子进程也可以把它们各自的那份数据交给它们各自的 gcd 函数执行。
  • 7)对执行结果做序列化处理,把它转化成二进制形式。
  • 8)将二进制数据通过 socket 复制到上级进程。
  • 9)在上级进程里面对二进制数据做反序列化处理,把它还原成 Python 对象。
  • 10)把每条子进程所给出的结果都还原好,最后合并到一个 list 里面返回。

从开发者这边来看,这个过程似乎很简单,但实际上,multiprocessing 模块与 Proce-ssPoolExecutor 类要做大量的工作才能实现出这样的并行效果。同样的效果,假如改用其他语言来做,那基本上只需要用一把锁或一项原子操作就能很好地协调多个线程,从而实现并行。但这在 Python 里面不行,所以才考虑通过 ProcessPoolExecutor 来实现。然而这样做的开销很大,因为它必须在上级进程与子进程之间做全套的序列化与反序列化处理。

这个方案对那种孤立的而且数据利用度较高的任务来说,比较合适。所谓孤立(isolated)​,这里指每一部分任务都不需要跟程序里的其他部分共用状态信息。所谓数据利用度较高(high-leverage)​,这里指任务所使用的原始材料以及最终所给出的结果数据量都很小,因此上级进程与子进程之间只需要互传很少的信息就行,然而在把原始材料加工成最终产品的过程中,却需要做大量运算。

如果你面对的计算任务不具备刚才那两项特征,那么使用 ProcessPoolExecutor 所引发的开销可能就会盖过因为并行而带来的好处。在这种情况下,可以考虑直接使用 multiprocessing 所提供的一些其他高级功能,例如共享内存(shared memory)、跨进程的锁(cross-process lock)、队列(queue)以及代理(proxy)等。但是,这些功能都相当复杂,即便两个 Python 线程之间所要共享的进程只有一条,也是要花很大工夫才能在内存空间里面将这些工具安排到位。假如需要共享的进程有很多条,而且还涉及 socket,那么这种代码理解起来会更加困难。

总之,不要刚一上来,就立刻使用跟 multiprocessing 这个内置模块有关的机制,而是可以先试着用 ThreadPoolExecutor 来运行这种孤立且数据利用度较高的任务。把这套方案实现出来之后,再考虑向 ProcessPoolExecutor 方案迁移。如果 ProcessPoolExecutor 方案也无法满足要求,而且其他办法也全都试遍了,那么最后可以考虑直接使用 multiprocessing 模块里的高级功能来编写代码。

这篇关于Python 中考虑 concurrent.futures 实现真正的并行计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146630

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四: