J.U.C Review - Stream并行计算原理源码分析

2024-09-07 06:52

本文主要是介绍J.U.C Review - Stream并行计算原理源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Java 8 Stream简介
  • Stream单线程串行计算
  • Stream多线程并行计算
  • 源码分析Stream并行计算原理
  • Stream并行计算的性能提升

在这里插入图片描述

Java 8 Stream简介

自Java 8推出以来,开发者可以使用Stream接口和lambda表达式实现流式计算。这种编程风格不仅简化了对集合操作的代码,还提高了代码的可读性和性能。

Stream接口提供了多种集合操作方法,包括empty(判空)、filter(过滤)、max(求最大值)、findFirstfindAny(查找操作)等,使得对集合的操作更加灵活和直观。


Stream单线程串行计算

在默认情况下,Stream接口是以串行的方式运行的,这意味着所有的操作都在一个线程内执行。我们可以通过以下示例代码展示这一点:

public class StreamDemo {public static void main(String[] args) {Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9).reduce((a, b) -> {System.out.println(String.format("%s: %d + %d = %d",Thread.currentThread().getName(), a, b, a + b));return a + b;}).ifPresent(System.out::println);}
}

在这个例子中,我们通过Stream.of()方法创建了一个包含数字1到9的流。随后,调用reduce方法对这些数字进行累加操作。reduce方法的作用是从前两个元素开始,执行指定操作(在此示例中为加法),然后将结果与下一个元素进行相同的操作,直到处理完所有元素。

程序的输出如下:

main: 1 + 2 = 3  
main: 3 + 3 = 6  
main: 6 + 4 = 10  
main: 10 + 5 = 15  
main: 15 + 6 = 21  
main: 21 + 7 = 28  
main: 28 + 8 = 36  
main: 36 + 9 = 45  
45

从输出可以看出,所有计算均由main线程执行,并且操作是严格按照元素顺序串行完成的。


Stream多线程并行计算

然而,单线程串行执行并不是唯一的选择。在现代多核处理器的时代,我们可以通过并行计算来更高效地利用计算资源。例如,当计算1+2=3的同时,我们可以在另一个线程中计算3+4=7,最后将这些部分结果进行合并。这种思想与Fork/Join框架的设计理念非常类似。

通过以下代码,我们可以让Stream在多线程中并行执行:

public class StreamParallelDemo {public static void main(String[] args) {Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9).parallel().reduce((a, b) -> {System.out.println(String.format("%s: %d + %d = %d",Thread.currentThread().getName(), a, b, a + b));return a + b;}).ifPresent(System.out::println);}
}

运行这段代码,输出如下:

ForkJoinPool.commonPool-worker-1: 3 + 4 = 7  
ForkJoinPool.commonPool-worker-4: 8 + 9 = 17  
ForkJoinPool.commonPool-worker-2: 5 + 6 = 11  
ForkJoinPool.commonPool-worker-3: 1 + 2 = 3  
ForkJoinPool.commonPool-worker-4: 7 + 17 = 24  
ForkJoinPool.commonPool-worker-4: 11 + 24 = 35  
ForkJoinPool.commonPool-worker-3: 3 + 7 = 10  
ForkJoinPool.commonPool-worker-3: 10 + 35 = 45  
45

从输出结果可以看出,这些计算是并行完成的,使用了ForkJoinPool中的commonPool线程池。尽管各个部分的计算是并行执行的,最终的结果仍然是正确的,因为Fork/Join框架负责协调这些并行任务。


源码分析Stream并行计算原理

通过以上的实践,我们知道Stream的并行计算底层是基于Fork/Join框架的。但具体是如何实现的?我们可以通过源码分析来探究。

首先,Stream.of()方法只是生成一个简单的流。接下来,我们查看parallel()方法的实现。由于这里的数据类型是int,因此调用的是BaseStream接口的parallel()方法。BaseStream接口的唯一实现类是AbstractPipeline类。以下是AbstractPipeline类的parallel()方法:

public final S parallel() {sourceStage.parallel = true;return (S) this;
}

这个方法的作用非常简单,仅仅是将sourceStage.parallel标志位设置为true,表示该流将以并行方式执行。

接下来,查看reduce方法的实现。Stream.reduce()方法的具体实现是通过ReferencePipeline这个抽象类,该类继承了AbstractPipeline类:

@Override
public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {return evaluate(ReduceOps.makeRef(accumulator));
}final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {assert getOutputShape() == terminalOp.inputShape();if (linkedOrConsumed)throw new IllegalStateException(MSG_STREAM_LINKED);linkedOrConsumed = true;return isParallel()? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())): terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
}@Override
public final boolean isParallel() {return sourceStage.parallel;
}

从源码可以看出,reduce方法调用了evaluate方法,而evaluate方法根据parallel标志位来决定是并行执行还是串行执行。如果paralleltrue,则调用evaluateParallel方法,否则调用evaluateSequential方法。

我们再来看evaluateParallel方法在ReduceOps.ReduceOp类中的具体实现:

@Override
public <P_IN> R evaluateParallel(PipelineHelper<T> helper,Spliterator<P_IN> spliterator) {return new ReduceTask<>(this, helper, spliterator).invoke().get();
}

evaluateParallel方法创建了一个ReduceTask实例,并调用其invoke()方法来执行计算。ReduceTask类继承自AbstractTaskAbstractTask又继承自CountedCompleter,最终继承自ForkJoinTask。这就解释了为什么Stream的并行计算底层使用了Fork/Join框架。


Stream并行计算的性能提升

最后,我们通过一个简单的性能测试来验证Stream并行计算的优势。下面的代码演示了如何计算一千万个随机数的和,并比较串行计算和并行计算的时间开销:

public class StreamParallelDemo {public static void main(String[] args) {System.out.println(String.format("本计算机的核数:%d", Runtime.getRuntime().availableProcessors()));Random random = new Random();List<Integer> list = new ArrayList<>(1000_0000);for (int i = 0; i < 1000_0000; i++) {list.add(random.nextInt(100));}long prevTime = getCurrentTime();list.stream().reduce((a, b) -> a + b).ifPresent(System.out::println);System.out.println(String.format("单线程计算耗时:%d", getCurrentTime() - prevTime));prevTime = getCurrentTime();list.stream().parallel().reduce((a, b) -> a + b).ifPresent(System.out::println);System.out.println(String.format("多线程计算耗时:%d", getCurrentTime() - prevTime));}private static long getCurrentTime() {return System.currentTimeMillis();}
}

在一台8核计算机上的输出结果如下:

本计算机的核数:8  
495156156  
单线程计算耗时:223  
495156156  
多线程计算耗时:95  

结果表明,在多核环境下,Stream的并行计算相比串行计算确实能够显著提升性能。然而,性能提升的幅度并非线性增长,因为线程管理和上下文切换本身也会带来一定的开销。如果在单核环境中,串行计算反而可能会比并行计算更快。

总结而言,Java 8的Stream并行计算通过简化代码的方式,利用了底层的多核资源,大幅提升了复杂集合操作的性能。然而在实际应用中,开发者需要根据具体的硬件环境和任务特性来决定是否使用并行计算。

在这里插入图片描述

这篇关于J.U.C Review - Stream并行计算原理源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144375

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

java Stream操作转换方法

《javaStream操作转换方法》文章总结了Java8中流(Stream)API的多种常用方法,包括创建流、过滤、遍历、分组、排序、去重、查找、匹配、转换、归约、打印日志、最大最小值、统计、连接、... 目录流创建1、list 转 map2、filter()过滤3、foreach遍历4、groupingB

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit