J.U.C Review - Stream并行计算原理源码分析

2024-09-07 06:52

本文主要是介绍J.U.C Review - Stream并行计算原理源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Java 8 Stream简介
  • Stream单线程串行计算
  • Stream多线程并行计算
  • 源码分析Stream并行计算原理
  • Stream并行计算的性能提升

在这里插入图片描述

Java 8 Stream简介

自Java 8推出以来,开发者可以使用Stream接口和lambda表达式实现流式计算。这种编程风格不仅简化了对集合操作的代码,还提高了代码的可读性和性能。

Stream接口提供了多种集合操作方法,包括empty(判空)、filter(过滤)、max(求最大值)、findFirstfindAny(查找操作)等,使得对集合的操作更加灵活和直观。


Stream单线程串行计算

在默认情况下,Stream接口是以串行的方式运行的,这意味着所有的操作都在一个线程内执行。我们可以通过以下示例代码展示这一点:

public class StreamDemo {public static void main(String[] args) {Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9).reduce((a, b) -> {System.out.println(String.format("%s: %d + %d = %d",Thread.currentThread().getName(), a, b, a + b));return a + b;}).ifPresent(System.out::println);}
}

在这个例子中,我们通过Stream.of()方法创建了一个包含数字1到9的流。随后,调用reduce方法对这些数字进行累加操作。reduce方法的作用是从前两个元素开始,执行指定操作(在此示例中为加法),然后将结果与下一个元素进行相同的操作,直到处理完所有元素。

程序的输出如下:

main: 1 + 2 = 3  
main: 3 + 3 = 6  
main: 6 + 4 = 10  
main: 10 + 5 = 15  
main: 15 + 6 = 21  
main: 21 + 7 = 28  
main: 28 + 8 = 36  
main: 36 + 9 = 45  
45

从输出可以看出,所有计算均由main线程执行,并且操作是严格按照元素顺序串行完成的。


Stream多线程并行计算

然而,单线程串行执行并不是唯一的选择。在现代多核处理器的时代,我们可以通过并行计算来更高效地利用计算资源。例如,当计算1+2=3的同时,我们可以在另一个线程中计算3+4=7,最后将这些部分结果进行合并。这种思想与Fork/Join框架的设计理念非常类似。

通过以下代码,我们可以让Stream在多线程中并行执行:

public class StreamParallelDemo {public static void main(String[] args) {Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9).parallel().reduce((a, b) -> {System.out.println(String.format("%s: %d + %d = %d",Thread.currentThread().getName(), a, b, a + b));return a + b;}).ifPresent(System.out::println);}
}

运行这段代码,输出如下:

ForkJoinPool.commonPool-worker-1: 3 + 4 = 7  
ForkJoinPool.commonPool-worker-4: 8 + 9 = 17  
ForkJoinPool.commonPool-worker-2: 5 + 6 = 11  
ForkJoinPool.commonPool-worker-3: 1 + 2 = 3  
ForkJoinPool.commonPool-worker-4: 7 + 17 = 24  
ForkJoinPool.commonPool-worker-4: 11 + 24 = 35  
ForkJoinPool.commonPool-worker-3: 3 + 7 = 10  
ForkJoinPool.commonPool-worker-3: 10 + 35 = 45  
45

从输出结果可以看出,这些计算是并行完成的,使用了ForkJoinPool中的commonPool线程池。尽管各个部分的计算是并行执行的,最终的结果仍然是正确的,因为Fork/Join框架负责协调这些并行任务。


源码分析Stream并行计算原理

通过以上的实践,我们知道Stream的并行计算底层是基于Fork/Join框架的。但具体是如何实现的?我们可以通过源码分析来探究。

首先,Stream.of()方法只是生成一个简单的流。接下来,我们查看parallel()方法的实现。由于这里的数据类型是int,因此调用的是BaseStream接口的parallel()方法。BaseStream接口的唯一实现类是AbstractPipeline类。以下是AbstractPipeline类的parallel()方法:

public final S parallel() {sourceStage.parallel = true;return (S) this;
}

这个方法的作用非常简单,仅仅是将sourceStage.parallel标志位设置为true,表示该流将以并行方式执行。

接下来,查看reduce方法的实现。Stream.reduce()方法的具体实现是通过ReferencePipeline这个抽象类,该类继承了AbstractPipeline类:

@Override
public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {return evaluate(ReduceOps.makeRef(accumulator));
}final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {assert getOutputShape() == terminalOp.inputShape();if (linkedOrConsumed)throw new IllegalStateException(MSG_STREAM_LINKED);linkedOrConsumed = true;return isParallel()? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())): terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
}@Override
public final boolean isParallel() {return sourceStage.parallel;
}

从源码可以看出,reduce方法调用了evaluate方法,而evaluate方法根据parallel标志位来决定是并行执行还是串行执行。如果paralleltrue,则调用evaluateParallel方法,否则调用evaluateSequential方法。

我们再来看evaluateParallel方法在ReduceOps.ReduceOp类中的具体实现:

@Override
public <P_IN> R evaluateParallel(PipelineHelper<T> helper,Spliterator<P_IN> spliterator) {return new ReduceTask<>(this, helper, spliterator).invoke().get();
}

evaluateParallel方法创建了一个ReduceTask实例,并调用其invoke()方法来执行计算。ReduceTask类继承自AbstractTaskAbstractTask又继承自CountedCompleter,最终继承自ForkJoinTask。这就解释了为什么Stream的并行计算底层使用了Fork/Join框架。


Stream并行计算的性能提升

最后,我们通过一个简单的性能测试来验证Stream并行计算的优势。下面的代码演示了如何计算一千万个随机数的和,并比较串行计算和并行计算的时间开销:

public class StreamParallelDemo {public static void main(String[] args) {System.out.println(String.format("本计算机的核数:%d", Runtime.getRuntime().availableProcessors()));Random random = new Random();List<Integer> list = new ArrayList<>(1000_0000);for (int i = 0; i < 1000_0000; i++) {list.add(random.nextInt(100));}long prevTime = getCurrentTime();list.stream().reduce((a, b) -> a + b).ifPresent(System.out::println);System.out.println(String.format("单线程计算耗时:%d", getCurrentTime() - prevTime));prevTime = getCurrentTime();list.stream().parallel().reduce((a, b) -> a + b).ifPresent(System.out::println);System.out.println(String.format("多线程计算耗时:%d", getCurrentTime() - prevTime));}private static long getCurrentTime() {return System.currentTimeMillis();}
}

在一台8核计算机上的输出结果如下:

本计算机的核数:8  
495156156  
单线程计算耗时:223  
495156156  
多线程计算耗时:95  

结果表明,在多核环境下,Stream的并行计算相比串行计算确实能够显著提升性能。然而,性能提升的幅度并非线性增长,因为线程管理和上下文切换本身也会带来一定的开销。如果在单核环境中,串行计算反而可能会比并行计算更快。

总结而言,Java 8的Stream并行计算通过简化代码的方式,利用了底层的多核资源,大幅提升了复杂集合操作的性能。然而在实际应用中,开发者需要根据具体的硬件环境和任务特性来决定是否使用并行计算。

在这里插入图片描述

这篇关于J.U.C Review - Stream并行计算原理源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144375

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源