第三节主要以理论推导为主,主要是为了推导出最大条件似然问题可以近似为最小化条件互信的问题: arg max θ L ( θ , D ) = arg min θ I ( X θ ~ ; Y ∣ X θ ) \arg\max_{\theta}\mathcal{L}(\theta,\mathcal{D})=\arg\min_\theta I(X_{\tilde\theta};Y|X_\
目录 1、文章信息2、主要思想2.1信息熵:2.2 基于互信息的滤波算法 1、文章信息 Title: Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection Author: Gavin Brown, Adam Pocock, Mi
Paper name Unifying Voxel-based Representation with Transformer for 3D Object Detection Paper Reading Note URL: https://arxiv.org/pdf/2206.00630.pdf TL;DR NIPS 2022 文章,提出了在 voxel 特征空间统一多模态输入的方式(U
【论文阅读】优化的框架来解释图神经网络(高通、低通滤波)Interpreting and Unifying Graph Neural Networks with An Optimization Framework 文章目录 【论文阅读】优化的框架来解释图神经网络(高通、低通滤波)Interpreting and Unifying Graph Neural Networks with An
论文标题:TableGPT: Towards Unifying Tables, Nature Language and Commands into One GPT 论文地址:https://github.com/ZJU-M3/TableGPT-techreport/blob/main/TableGPT_tech_report.pdf 发表机构:浙江大学 发表时间:2023 本文从摘要,引言
Paper name OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework Paper Reading Note URL: https://proceedings.mlr.press/v162/wang22al/wang22al.p
论文链接https://arxiv.org/abs/2210.05559github链接https://github.com/ChenWu98/cycle-diffusion Abstract Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted
统一大语言模型和知识图谱综述 Unifying Large Language Models and Knowledeg Graphs: A Roadmap githb:https://github.com/zjukg/KG-LLM-Papers 介绍了大语言模型的知识图谱结合的一些东西。 introduction LLM在一些NLP任务上发展很好。最近,模型参数规模的大幅度增加进一步