【论文学习】Fast Online Object Tracking and Segmentation: A Unifying Approach 在线快速目标跟踪与分割 -论文学习

本文主要是介绍【论文学习】Fast Online Object Tracking and Segmentation: A Unifying Approach 在线快速目标跟踪与分割 -论文学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Fast Online Object Tracking and Segmentation: A Unifying Approach
在线快速目标跟踪与分割:一种通用方法

摘要

论文提出一种实时VOT和半监督VOS的通用方法。
该方法称为SiamMask,通过二值分割任务生成损失,改进了全卷积Siamese 方法的离线训练步骤。
训练完成后,SiamMask 依靠init 单个bbox并在线运行,生成与类别无关的对象分割Mask,和旋转bbox。速度可达每秒55帧。
策略实现了VOT-2018上最佳的跟踪效果。同时实现了DAVIS-2016和DAVIS-2017上半监督VOS任务的最佳性能和速度。
项目地址:http://www.robots.ox.ac.uk/˜qwang/SiamMask

1.引言

跟踪是一项基本任务。广泛应用在视频分析程序中,目标对象的某种程度推理。
跟踪允许在帧之间建立前后对象的对应关系[34]。
跟踪广泛用于各种场景,如自动监控,车辆导航,视频标签,人机交互和活动识别。
VOT的目的,在视频的第一帧中,给定任意感兴趣Object的位置,尽可能准确的预测它在所有后续帧中的位置。[48]对许多应用来说,视频流传输时的在线跟踪很重要。换句话讲,tracker 不应利用后续的帧来推断物体的当前位置[26]。
这个VOT基准所描绘的场景,代表了具有简单轴对齐(例如[56,52])或旋转[26,27] bbox 的目标对象。
这样简单的标注方法数据标注成本较低。更重要的是,它允许用户快速,简单的执行目标初始化。

2.相关工作

VOT

半监督VOS

3.方法

3.1.全卷积联合网络

【SiamFC】
作为跟踪系统的基本组成部分,离线训练的全卷积Siamese网络,可用于比较目标图像z和稍大是待搜索图像x,来获取响应 map。
z是以目标对象为中心裁剪的 w×h区域,x是以目标最新估计位置为中心裁切的较大区域。
这两个输入使用相同的CNN fθ处理,生成两个相互关联的特征图。

在这里插入图片描述

【SiamRPN】
依靠RPN大大提高了SiamFC的性能(RPN)[46,14],RPN对估算目标位置可	输出可变宽高比的bbox。尤其在SiamRPN中,每个行对一组​​k个anchor box proposals和相应的对象/背景scores 进行编码。因此,SiamRPN 对 box predictions与分类scores可并行输出。两个输出分支已使用 smooth L1 和交叉熵损失训练过[28,第3.2节]。

3.2. SiamMask

在这里插入图片描述

Loss function

在这里插入图片描述

Mask representation

Two variants

在这里插入图片描述

Box generation

3.3. Implementation details

Network architecture

Training

Inference

4.实验

4.1.VOT 评估

Datasets and settings.

How much does the object representation matter?

在这里插入图片描述

Results on VOT-2018 and VOT-2016.

4.2.半监督VOS评估

Datasets and settings.

Results on DAVIS and YouTube-VOS.

4.3.进一步分析

Network architecture

Multi-task training

Timing.

Failure cases.

对于目标模糊和非目标实例失效

结论

介绍了SiamMask,使用全卷积连体跟踪器对目标生成类别无关的二值分割Mask。
展示其如何成功的同时应用在VOT和半监督VOS任务上。
达到现有跟踪器最佳精度,同时也实现了最快的VOS。
提出的 SiamMask 的两个变种,只需一个简单地box进行初始化,在线操作,实时运行,并且无需对测试序列进行任何调整。

Acknowledgements

引用

[1] L. Bao, B. Wu, and W. Liu. Cnn in mrf: Video object segmentation via inference in a cnn-based higher-order spatiotemporal mrf. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 2, 3, 6
[2] L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, and
A. Vedaldi. Learning feed-forward one-shot learners. In Advances in Neural Information Processing Systems, 2016. 3
[3] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and
P. H. Torr. Fully-convolutional siamese networks for object
tracking. In European Conference on Computer Vision workshops, 2016. 2, 3, 4, 5, 6
[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.
Visual object tracking using adaptive correlation filters. In
IEEE Conference on Computer Vision and Pattern Recognition, 2010. 2
[5] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixe, ´
D. Cremers, and L. Van Gool. One-shot video object segmentation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 7
[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. 5, 11
[7] Y. Chen, J. Pont-Tuset, A. Montes, and L. Van Gool. Blazingly fast video object segmentation with pixel-wise metric
learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2018. 2, 3, 7
[8] J. Cheng, Y.-H. Tsai, W.-C. Hung, S. Wang, and M.-H. Yang.
Fast and accurate online video object segmentation via tracking parts. In IEEE Conference on Computer Vision and Pattern Recognition, 2018. 2, 3, 6, 7
[9] J. Cheng, Y.-H. Tsai, S. Wang, and M.-H. Yang. Segflow:
Joint learning for video object segmentation and optical
flow. In IEEE International Conference on Computer Vision,
2017. 3, 7
[10] H. Ci, C. Wang, and Y. Wang. Video object segmentation by
learning location-sensitive embeddings. In European Conference on Computer Vision, 2018. 2
[11] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. In IEEE Conference
on Computer Vision and Pattern Recognition, 2000. 2
[12] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg. Eco:
Efficient convolution operators for tracking. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.
1, 2
[13] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. Learn- ¨
ing spatially regularized correlation filters for visual tracking. In IEEE International Conference on Computer Vision,
2015. 2, 5
[14] C. Feichtenhofer, A. Pinz, and A. Zisserman. Detect to track
and track to detect. In IEEE International Conference on
Computer Vision, 2017. 3
[15] A. He, C. Luo, X. Tian, and W. Zeng. Towards a better match
in siamese network based visual object tracker. In European
Conference on Computer Vision workshops, 2018. 2, 6, 7
[16] A. He, C. Luo, X. Tian, and W. Zeng. A twofold siamese
network for real-time object tracking. In IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 3
[17] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r- ´
cnn. In IEEE International Conference on Computer Vision,
2017. 4
[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016. 5, 11
[19] D. Held, S. Thrun, and S. Savarese. Learning to track at 100
fps with deep regression networks. In European Conference
on Computer Vision, 2016. 2, 5
[20] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2015. 2, 5
[21] Y.-T. Hu, J.-B. Huang, and A. G. Schwing. Videomatch:
Matching based video object segmentation. In European
Conference on Computer Vision, 2018. 2, 3
[22] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation
networks. In IEEE Conference on Computer Vision and Pattern Recognition, 2017. 2, 3, 7
[23] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele.
Lucid data dreaming for object tracking. In IEEE Conference on Computer Vision and Pattern Recognition workshops, 2017. 2, 3, 6
[24] H. Kiani Galoogahi, T. Sim, and S. Lucey. Multi-channel
correlation filters. In IEEE International Conference on
Computer Vision, 2013. 2
[25] H. Kiani Galoogahi, T. Sim, and S. Lucey. Correlation filters
with limited boundaries. In IEEE Conference on Computer
Vision and Pattern Recognition, 2015. 2
[26] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,
R. Pflugfelder, L. Cehovin, T. Voj ˇ ´ır, G. Hager, A. Luke ¨ zi ˇ c, ˇ
G. Fernandez, et al. The visual object tracking vot2016 chal- ´
lenge results. In European Conference on Computer Vision,
2016. 1, 3, 5
[27] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,
R. Pfugfelder, L. C. Zajc, T. Vojir, G. Bhat, A. Lukezic,
A. Eldesokey, G. Fernandez, and et al. The sixth visual object
tracking vot-2018 challenge results. In European Conference
on Computer Vision workshops, 2018. 1, 3, 5, 8, 12
[28] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High performance
visual tracking with siamese region proposal network. In
IEEE Conference on Computer Vision and Pattern Recognition, 2018. 2, 3, 4, 5, 7
[29] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang. Learning spatial-temporal regularized correlation filters for visual
tracking. In IEEE Conference on Computer Vision and Pattern Recognition, 2018. 2, 6, 7
[30] X. Li and C. C. Loy. Video object segmentation with joint
re-identification and attention-aware mask propagation. In
European Conference on Computer Vision, 2018. 2, 3, 6
[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft coco: Com- ´
mon objects in context. In European Conference on Computer Vision, 2014. 5
9[32] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2015. 4
[33] A. Lukezic, T. Vojir, L. C. Zajc, J. Matas, and M. Kristan.
Discriminative correlation filter with channel and spatial reliability. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 2, 5, 6, 7
[34] T. Makovski, G. A. Vazquez, and Y. V. Jiang. Visual learning
in multiple-object tracking. PLoS One, 2008. 1
[35] K.-K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. LealTaixe, D. Cremers, and L. Van Gool. Video object segmen- ´
tation without temporal information. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017. 2, 3, 6
[36] N. Marki, F. Perazzi, O. Wang, and A. Sorkine-Hornung. Bi- ¨
lateral space video segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016. 2, 3, 6
[37] O. Miksik, J.-M. Perez-R ´ ua, P. H. Torr, and P. P ´ erez. Roam: ´
a rich object appearance model with application to rotoscoping. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 1
[38] F. Perazzi. Video Object Segmentation. PhD thesis, ETH
Zurich, 2017. 1, 3, 6
[39] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and
A. Sorkine-Hornung. Learning video object segmentation
from static images. In IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 2, 3, 6, 7
[40] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool,
M. Gross, and A. Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1, 3, 6, 7, 8, 13
[41] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung.
Fully connected object proposals for video segmentation. In
IEEE International Conference on Computer Vision, 2015. 3
[42] P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based ´
Probabilistic Tracking. In European Conference on Computer Vision, 2002. 2
[43] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to seg- ´
ment object candidates. In Advances in Neural Information
Processing Systems, 2015. 2, 4
[44] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollar. Learn- ´
ing to refine object segments. In European Conference on
Computer Vision, 2016. 4, 7, 11
[45] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbelaez, A. Sorkine- ´
Hornung, and L. Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 6, 8, 13
[46] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, 2015.
2, 3
[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015. 5
[48] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah. Visual tracking: An experimental
survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014. 1, 3
[49] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance
search for tracking. In IEEE Conference on Computer Vision
and Pattern Recognition, 2016. 2
[50] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmentation via object flow. In IEEE Conference on Computer Vision
and Pattern Recognition, 2016. 2, 3, 6
[51] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and
P. H. S. Torr. End-to-end representation learning for correlation filter based tracking. In IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 2
[52] J. Valmadre, L. Bertinetto, J. F. Henriques, R. Tao,
A. Vedaldi, A. Smeulders, P. H. S. Torr, and E. Gavves.
Long-term tracking in the wild: A benchmark. In European
Conference on Computer Vision, 2018. 1
[53] P. Voigtlaender and B. Leibe. Online adaptation of convolutional neural networks for video object segmentation. In
British Machine Vision Conference, 2017. 2, 3, 6, 7
[54] T. Vojir and J. Matas. Pixel-wise object segmentations for
the vot 2016 dataset. Research Report CTU-CMP-2017–01,
Center for Machine Perception, Czech Technical University,
Prague, Czech Republic, 2017. 6
[55] L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang. Jots: Joint
online tracking and segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2015. 2, 3, 6
[56] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In IEEE Conference on Computer Vision and
Pattern Recognition, 2013. 1, 3
[57] S. Wug Oh, J.-Y. Lee, K. Sunkavalli, and S. Joo Kim. Fast
video object segmentation by reference-guided mask propagation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2018. 2, 3, 7
[58] N. Xu, L. Yang, Y. Fan, J. Yang, D. Yue, Y. Liang, B. Price,
S. Cohen, and T. Huang. Youtube-vos: Sequence-tosequence video object segmentation. In European Conference on Computer Vision, 2018. 2, 5, 6
[59] L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos.
Efficient video object segmentation via network modulation.
In IEEE Conference on Computer Vision and Pattern Recognition, June 2018. 2, 3, 7
[60] T. Yang and A. B. Chan. Learning dynamic memory networks for object tracking. In European Conference on Computer Vision, 2018. 2, 3
[61] D. Yeo, J. Son, B. Han, and J. H. Han. Superpixel-based
tracking-by-segmentation using markov chains. In IEEE
Conference on Computer Vision and Pattern Recognition,
2017. 2
[62] J. S. Yoon, F. Rameau, J. Kim, S. Lee, S. Shin, and I. S.
Kweon. Pixel-level matching for video object segmentation
using convolutional neural networks. In IEEE International
Conference on Computer Vision, 2017. 7
[63] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu.
Distractor-aware siamese networks for visual object tracking. In European Conference on Computer Vision, 2018. 2,
3, 5, 6, 7

A. Architectural details

Network backbone

Network heads

Mask refinement module

B. Further qualitative results

Different masks at different locations

Benchmark sequences

这篇关于【论文学习】Fast Online Object Tracking and Segmentation: A Unifying Approach 在线快速目标跟踪与分割 -论文学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019029

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

深入探讨Java 中的 Object 类详解(一切类的根基)

《深入探讨Java中的Object类详解(一切类的根基)》本文详细介绍了Java中的Object类,作为所有类的根类,其重要性不言而喻,文章涵盖了Object类的主要方法,如toString()... 目录1. Object 类的基本概念1.1 Object 类的定义2. Object 类的主要方法3. O