文章目录 1、前言2、Introduction3、Method3.1、Overall ArchitectureSwin Transformer block3.2、Shifted Window based Self-AttentionSelf-attention in non-overlapped windowsShifted window partitioning in successive
Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation:基于双层领域混合的半监督领域自适应语义分割 0.摘要1.介绍2.相关工作2.1.用于语义分割的无监督域自适应2.2.语义分割的半监督学习。2.3.半监督域自适应 3.方法3.1.问题陈述3.2.领域混合教师
Motivation: recovering the geometry of a 3D shape from a single RGB image 常用的primitive-based representations 寻求推断在不同对象实例之间推断语义一致的part排列,并提供更具解释性的替代方法,而非仅注意提取全局物体。 现存的一些方法由于其简单的参数化,这些原语的表达能力有限无法捕捉复杂