CVPR2021-语义分割调研

2024-03-04 13:50
文章标签 分割 语义 调研 cvpr2021

本文主要是介绍CVPR2021-语义分割调研,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语义分割调研(2021)

一、 Rethinking BiSeNet For Real-time Semantic Segmentation

· Paper: https://arxiv.org/abs/2104.13188

· Code: https://github.com/MichaelFan01/STDC-Seg

文章归类:图像分割,网络结构创新,实时

主体思想:

1、希望利用网络结构的改造,来弥补“感受野”受限的不足,因此BiSeNet的网络结构拥有两条主线“Spatial Path (SP)” 和 “Context Path (CP)”

2、设计了特征整合的新模块“Feature Fusion Module (FFM)” 以及 用于attention加权的模块“Attention Refinement Module (ARM)” 来提升feature maps的一个性能,让特征更具有代表性。

3、速度快(网络结构小巧)

网络整体结构

在这里插入图片描述

结果:主要是速度快,105FPS

二、ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation

  • Paper: https://arxiv.org/abs/2012.05258
  • Code: https://github.com/joe-siyuan-qiao/ViP-DeepLab

提出了一个统一的模型ViP-DeepLab,试图解决视觉反投影问题,我们将其建模为从透视图像序列恢复点云,同时为每个点提供实例级语义解释。解决这一问题需要视觉模型预测每个三维点的空间位置、语义类和时间一致的实例标签。ViP-DeepLab通过联合进行单目深度估计和视频全景分割来实现。我们将这一联合任务命名为深度感知视频全景分割,并提出了一个新的评估指标和两个衍生数据集。

在这里插入图片描述

三、Progressive Semantic Segmentation

  • Paper: https://arxiv.org/abs/2104.03778
  • Code: https://github.com/VinAIResearch/MagNet

这项工作的目标是

这篇关于CVPR2021-语义分割调研的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773380

相关文章

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

mysql动态扩容调研

MySQL动态扩容方案 目前可用方案 MySQL的复制: 一个Master数据库,多个Salve,然后利用MySQL的异步复制能力实现读写分离,这个方案目前应用比较广泛,这种技术对于以读为主的应用很有效。数据切分(MySQL的Sharding策略): 垂直切分:一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分;垂直切分的思路就是分析

基于YOLO8的图片实例分割系统

文章目录 在线体验快速开始一、项目介绍篇1.1 YOLO81.2 ultralytics1.3 模块介绍1.3.1 scan_task1.3.2 scan_taskflow.py1.3.3 segment_app.py 二、核心代码介绍篇2.1 segment_app.py2.2 scan_taskflow.py 三、结语 代码资源:计算机视觉领域YOLO8技术的图片实例分割实

八、我们应当怎样做需求调研:需求捕获(下)

前面我们讨论了,需求分析工作是一个迭代的过程:需求捕获->需求整理->需求验证->再需求捕获······需求捕获是这个迭代过程的开始,也是整个需求分析工作中最重要的部分。没有捕获哪来后面的整理与验证工作?但是,非常遗憾,按照我以往的经验,需求捕获是我们最薄弱的环节。前面我提到的许许多多项目开发的问题都可以归结为需求分析的问题,而许许多多需求分析的问题又都可以归结为需求捕获不完整的问题。需求捕获是整

七、我们应当怎样做需求调研:需求捕获(上)

前面我们讨论了,需求分析工作是一个迭代的过程:需求捕获->需求整理->需求验证->再需求捕获······需求捕获是这个迭代过程的开始,也是整个需求分析工作中最重要的部分。没有捕获哪来后面的整理与验证工作?但是,非常遗憾,按照我以往的经验,需求捕获是我们最薄弱的环节。前面我提到的许许多多项目开发的问题都可以归结为需求分析的问题,而许许多多需求分析的问题又都可以归结为需求捕获不完整的问题。需求捕获是整

六、我们应当怎样做需求调研:迭代

前面我一直在反复强调这样一个观点,需求分析不是一蹴而就的,是一个反复迭代的过程。它将从第一次需求分析开始,一直持续到整个项目生命周期。为什么这样说呢?让我们一起来分析分析。  在第一次的需求分析阶段,我们在一段时期内需要与客户进行反复地讨论,这个过程往往是这样一个反复循环的过程:需求捕获->需求整理->需求验证->再需求捕获••••••  需求捕获,就是我们与客户在一起开研讨会

五、我们应当怎样做需求调研:需求研讨

前面我们探讨了业务研讨会应当怎样组织,下面我们再具体讨论一下我们应当怎样与客户讨论业务需求。如果说组织业务研讨会是项目经理的功底,那么讨论业务需求就是需求分析人员的功底。  以往我们常常认为,需求分析是一件最简单的事情。客户说他们需要做一个什么软件,有些什么功能,我们照着做就可以了,所谓的需求分析员就是需求的记录员。我要说,这是一个极大的错误,许多失败的软件项目,或者说软件项目中的需求问

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构