CVPR2021| 继SE,CBAM后的一种新的注意力机制:坐标注意力机制(Coordinate Attention)

2023-11-21 13:10

本文主要是介绍CVPR2021| 继SE,CBAM后的一种新的注意力机制:坐标注意力机制(Coordinate Attention),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

论文:http://arxiv.org/abs/2103.02907论文:http://arxiv.org/abs/2103.02907

 论文:源码:https://github.com/Andrew-Qibin/CoordAttention

        在本文中提出了一种新颖且高效的注意力机制,通过嵌入位置信息到通道注意力,从而使移动网络获取更大区域的信息而避免引入大的开销。为了避免2D全局池化引入位置信息损失,本文提出分解通道注意为两个并行的1D特征编码来高效地整合空间坐标信息到生成的attention maps中。

        具体而言,利用两个1D全局池化操作将沿垂直和水平方向的input features分别聚合为两个单独的direction-aware feature maps。 然后将具有嵌入的特定方向信息的这两个特征图分别编码为两个attention map,每个attention map都沿一个空间方向捕获输入特征图的远距离依存关系。 位置信息因此可以被保存在所生成的attention map中。 然后通过乘法将两个attention map都应用于input feature maps,以强调注意区域的表示。

        考虑到其操作可以区分空间方向(W,H即坐标)并生成coordinate-aware attention maps,因此论文将提出的注意力方法称为“coordinate attention”。

二、图解

 

         1、得到input后,获取input的W和H,然后对W和H分别进行平均池化。XAvgPoo是对W方向做平均池化,得到C × H × 1;同样 YAvgPool是对H方向做平均池化,得到C × 1 × W
        2、对平均池化后的结果做空间维度(dim=2)的concat,然后做卷积(kernel_size=1, stride=1)压缩通道

        3、然后再通过BN和Non-linear(激活函数)
        4、再进行split分离(就是将完整的特征向量重新分为两个方向的向量),然后做卷积(kernel_size=1, stride=1)重新调整两个方向特征向量的通道数,然后经过Sigmoid函数
        5、最后在与原输入信息进行两个方向的加权


三、pytorch代码

        

import torch
import torch.nn as nn
import math
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, oup, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out

        插入CAM模块后的结果跟自己网络和数据集有关

这篇关于CVPR2021| 继SE,CBAM后的一种新的注意力机制:坐标注意力机制(Coordinate Attention)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402531

相关文章

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

JAVA SE包装类和泛型详细介绍及说明方法

《JAVASE包装类和泛型详细介绍及说明方法》:本文主要介绍JAVASE包装类和泛型的相关资料,包括基本数据类型与包装类的对应关系,以及装箱和拆箱的概念,并重点讲解了自动装箱和自动拆箱的机制,文... 目录1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱2. 泛型2

Nginx之upstream被动式重试机制的实现

《Nginx之upstream被动式重试机制的实现》本文主要介绍了Nginx之upstream被动式重试机制的实现,可以通过proxy_next_upstream来自定义配置,具有一定的参考价值,感兴... 目录默认错误选择定义错误指令配置proxy_next_upstreamproxy_next_upst

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取