摘要 Many real-world data(真实世界的数据) come in the form of graphs(以图片的形式). Graph neural networks (GNNs 图神经网络), a new family of machine learning (ML) models, have been proposed to fully leverage graph data(
版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.csdn.net/topmvp - topmvp It's not the computer. The hacker's first target is YOU! A dirty little secret that vendors don't want
版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.csdn.net/topmvp - topmvp Microsoft hails the latest version of its flagship server operating system, Windows Server 2008, as "th
Understanding adversarial attacks on deep learning based medical image analysis systems----《理解基于深度学习的医学图像分析系统的对抗攻击》 背景: 最近的一项研究表明,医学深度学习系统可能会因精心设计的对抗性示例/攻击以及难以察觉的小扰动而受到损害。作者发现医学DNN模型比自然图像模型更容易受到攻击,
Adversarial attacks and defenses on AI in medical imaging informatics: A survey----《AI在医学影像信息学中的对抗性攻击与防御:综述》 背景: 之前的研究表明,人们对医疗DNN及其易受对抗性攻击的脆弱性一直存在疑虑。 摘要: 近年来,医学图像显着改善并促进了多种任务的诊断,包括肺部疾病分类、结节检测、脑
基于confidence vector的MIA Machine Learning as a Service简单介绍什么是Membership Inference Attacks(MIA)攻击实现过程DatasetShadow trainingTrain attack model Machine Learning as a Service简单介绍 机器学习即服务(Machine
Robust Physical-World Attacks on Deep Learning Visual Classification 对深度学习视觉分类的鲁棒物理世界攻击 Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Ko
基于本文的几个跟踪研究 ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learn MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples背
文章目录 概主要内容Auto-PGDMomentumStep Size损失函数AutoAttack Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Confe
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning 论文复现 代码链接:点我🙂 1. 模型说明 网络使用的是LeNet-5,只包含两个卷积层和若干全连接层,参数量很小数据集使用的mnist手写数据集(训练集:60000 测试集:10000)实现了Backdoor的两种攻击形式(instance
文章目录 ABSTRACTI. INTRODUCTIONII. BACKGROUND: BACKDOOR INJECTION IN DNNSIII. OVERVIEW OF OUR APPROACH AGAINST BACKDOORSA. Attack ModelB. Defense Assumptions and GoalsC. Defense Intuition and Overview