【论文阅读】Membership Inference Attacks Against Machine Learning Models

本文主要是介绍【论文阅读】Membership Inference Attacks Against Machine Learning Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于confidence vector的MIA

  • Machine Learning as a Service简单介绍
  • 什么是Membership Inference Attacks(MIA)
  • 攻击实现过程
    • Dataset
    • Shadow training
    • Train attack model

Machine Learning as a Service简单介绍

机器学习即服务(Machine Learning as a Service,MLaaS),即将机器学习算法部署到云平台上,用户可以上传自己的数据集,利用MLaaS上的算法等资源训练一个model,然后用这个模型预测。比如超市可以训练一个模型预测用户的购物喜好。 这里需要注意的是,大多数MLaaS平台,学习算法、训练过程、超参数的设定以及最终训练好的模型都不会对用户暴露,即MLaaS对用户是黑盒的,用户最终只能使用平台训练好的模型的预测输出。

什么是Membership Inference Attacks(MIA)

MIA攻击过程:判断一条数据是否用于训练指定的模型(target model),其涉及到用户信息的隐私信息。比如一个医疗机构利用用户数据训练一个模型,该模型用于判断哪些体检指标与患癌症相关,用于预测病人患癌症的概率。攻击者知道某一病人的数据,并利用MIA预测该用户数据用于训练了该模型,那么攻击者便能大胆猜测——该用户得了癌症,之后就可能向该用户推送一些医疗保险之类的。
MIA能够攻击成功的一个重要因素是,模型对于其训练数据集的预测分布与对其没有见过的数据集的预测分布是不同的,其中可能的原因是模型对其训练数据集过拟合了(神经网络很多参数是冗余的,会记住训练数据集额外的一些信息)。
MIA可以根据攻击者所知道的额外的信息多少分为白盒(white-box)和黑盒(black-box):

  • 白盒:攻击者知道目标模型model structure、训练的细节、用到的learning algorithm等等;以及训练数据集或者其分布等等;
  • 黑盒:攻击者只能以black-box的形式访问目标模型,即query目标模型时,仅能得到目标模型的输出(prediction vector),模型的结构以及训练过程等信息一无所知;

攻击实现过程

Dataset

Shadow training

Train attack model

这篇关于【论文阅读】Membership Inference Attacks Against Machine Learning Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656263

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型