GBDT调参--贝叶斯调参

2024-05-16 12:36
文章标签 贝叶斯 调参 gbdt

本文主要是介绍GBDT调参--贝叶斯调参,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
随机抽特征和随机抽样本

  n_estimators 是控制森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越 大,模型的效果往往越好。但是相应的,任何模型都有决策边  n_estimators达到一定的程度之后,随机森林的 精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越 长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e97ba27347c84304984b822aefd61399.png)

在这里插入图片描述
在这里插入图片描述

这篇关于GBDT调参--贝叶斯调参的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994929

相关文章

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

【机器学习 模型调参】GridSearchCV模型调参利器

导入模块sklearn.model_selection from sklearn.model_selection import GridSearchCV GridSearchCV 称为网格搜索交叉验证调参,它通过遍历传入的参数的所有排列组合,通过交叉验证的方式,返回所有参数组合下的评价指标得分,GridSearchCV 函数的参数详细解释如下: class sklearn.model_se

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

【机器学习】朴素贝叶斯

3. 朴素贝叶斯 素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。 优点: 速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝

机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料)

完整的论文代码见文章末尾 以下为核心内容和部分结果 问题背景 帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,其主要特征是中枢神经系统的多巴胺能神经元逐渐丧失,导致患者出现运动障碍、震颤、僵硬等症状。然而,除运动症状外,帕金森病患者还常常伴有一系列非运动症状,其中睡眠障碍是最为显著的非运动症状之一。 脑电图(Electroencephalogram, E

看demo学算法之 贝叶斯网络

大家好,这里是小琳AI课堂!今天我们一起来学习贝叶斯网络,这是一种非常酷的图形模型,它能帮助我们理解和处理变量之间的条件依赖关系。🎨📊 贝叶斯网络基础 首先,贝叶斯网络是基于贝叶斯定理的,这个定理可以帮助我们通过已知的变量来推测未知变量的概率。想象一下,每个节点代表一个随机变量,而边则表示这些变量之间的依赖关系。是不是很神奇?✨ 网络结构 在贝叶斯网络中,每个节点都有自己的概率分布,这

pytorch pyro 贝叶斯神经网络 bnn beyesean neure network svi ​定制SVI目标和培训循环,变更推理

定制SVI目标和培训循环¶ Pyro支持各种基于优化的贝叶斯推理方法,包括Trace_ELBO作为SVI(随机变分推理)的基本实现。参见文件(documents的简写)有关各种SVI实现和SVI教程的更多信息I, 二,以及罗马数字3了解SVI的背景。 在本教程中,我们将展示高级用户如何修改和/或增加变分目标(或者:损失函数)以及由Pyro提供的训练步骤实现,以支持特殊的用例。 基本SVI用

【干货】神经网络调参技巧大揭秘

神经网络调参技巧大揭秘 ——从过拟合到优化器选择的全面解析 参考文献: 深度学习调参有哪些技巧? - 爱睡觉的KKY的回答 - 知乎 https://www.zhihu.com/question/25097993/answer/2717281021 核心结论: 神经网络调参是一个既需要理论指导又需要实践经验的复杂过程。通过先过拟合再trade off、精细调整学习率(Learning

AI学习指南深度学习篇-门控循环单元的调参和优化

AI学习指南深度学习篇:门控循环单元的调参和优化 引言 神经网络在处理序列数据(如文本、时间序列等)方面展现出了强大的能力。门控循环单元(GRU)是循环神经网络(RNN)的一种变体,具有较为简单的结构和强大的性能。为了充分发挥GRU的潜力,调参和优化过程至关重要。本文将深入探讨GRU中的调参技巧、训练过程优化及避免过拟合的方法。 一、门控循环单元(GRU)简介 1.1 GRU的结构 GR