【干货】神经网络调参技巧大揭秘

2024-09-03 15:12

本文主要是介绍【干货】神经网络调参技巧大揭秘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

神经网络调参技巧大揭秘
——从过拟合到优化器选择的全面解析

参考文献:

深度学习调参有哪些技巧? - 爱睡觉的KKY的回答 - 知乎
https://www.zhihu.com/question/25097993/answer/2717281021

核心结论
神经网络调参是一个既需要理论指导又需要实践经验的复杂过程。通过先过拟合再trade off、精细调整学习率(Learning Rate, LR)、合理选择批量大小(Batch Size)、优化Dropout比率、挑选合适的初始化方法、运用层归一化(Layer Normalization, LN)或批量归一化(Batch Normalization, BN)、设计层次化的模型结构、创新数据增强方法、严格设定随机数种子、巧妙设计交叉验证方式以及明智选择优化器等策略,可以显著提升神经网络的性能和稳定性。

【表格】神经网络调参技巧概览

序号调参技巧描述关键参数/方法备注
1先过拟合再Trade Off确保模型容量足够,再尝试减小模型,使用正则化方法模型容量,正则化方法避免模型过于简单,无法捕捉数据特征
2精细调整学习率NLP任务常用1e-5级别,CV任务常用1e-3级别,需尝试衰减策略学习率,衰减策略学习率是最重要的超参数之一
3合理选择批量大小表示学习、对比学习领域批量大小越大越好,否则模型可能不收敛批量大小,累计梯度策略显存不足时考虑使用累计梯度策略
4优化Dropout比率预训练模型内部Dropout比率是一个重要参数,需尝试不同设置Dropout比率,重置为0的策略使用默认值不一定最优
5挑选合适的初始化方法Linear/CNN常用Kaiming Uniform或Normalize,Embedding常用截断Normalize初始化方法合适的初始化方法有助于模型训练
6运用LN/BN序列输入使用LN,非序列输入使用BNLN,BN有助于模型训练的稳定性
7设计层次化的模型结构基于Backbone构建层次化的Neck,通常优于直接使用最后一层输出Neck结构,Reduce Function(如Attention)层次化结构有助于提取更丰富的特征信息
8创新数据增强方法结合任务本身设计数据增强方法数据增强方法有助于提升模型的泛化能力
9严格设定随机数种子确保对比实验的准确性随机数种子避免实验结果受随机因素影响
10巧妙设计交叉验证方式结合任务和数据标签设计交叉验证方式,避免未来信息泄漏交叉验证方式确保模型评估的准确性和公正性
11明智选择优化器NLP任务优先考虑Adam,其他问题可尝试SGD优化器(Adam,SGD)优化器选择影响模型的训练效率和效果
12避免过早停止训练有时候收敛平台在后段,过早停止会错过最佳性能早停策略确保模型有足够的时间收敛到最佳状态

关键点关系描述

  1. 模型容量与正则化:首先确保模型有足够的容量去过拟合训练数据,然后再通过正则化方法去调整模型复杂度,以避免过拟合。
  2. 学习率的重要性:学习率是神经网络训练过程中最关键的超参数之一,它决定了模型参数更新的步长,需要仔细调整。
  3. 批量大小与模型收敛:在表示学习和对比学习领域,批量大小对模型的收敛性有显著影响,批量越大,模型越容易收敛。
  4. Dropout比率的调整:Dropout是一种有效的正则化方法,但在使用预训练模型时,需要特别注意Dropout比率的设置。
  5. 初始化方法的选择:合适的初始化方法可以帮助模型更快地收敛,并达到更好的性能。
  6. 层归一化与批量归一化:LN和BN是两种常用的归一化方法,它们分别适用于序列输入和非序列输入,有助于提升模型的训练稳定性。
  7. 层次化模型结构:构建层次化的模型结构可以提取更丰富的特征信息,通常比直接使用最后一层输出效果更好。
  8. 数据增强与泛化能力:创新的数据增强方法可以显著提升模型的泛化能力,但需要结合具体任务来设计。
  9. 随机数种子与实验准确性:设定好随机数种子可以确保对比实验的准确性,避免实验结果受随机因素影响。
  10. 交叉验证与模型评估:巧妙设计交叉验证方式可以确保模型评估的准确性和公正性,同时需要避免未来信息泄漏。
  11. 优化器选择:优化器的选择会影响模型的训练效率和效果,需要根据具体任务和问题来选择合适的优化器。
  12. 早停策略与模型性能:避免过早停止训练可以确保模型有足够的时间收敛到最佳状态,从而达到更好的性能。

参考文献

  1. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034). 【影响因子=9.6,CVPR 2015】

    • 内容概述:该论文提出了Kaiming初始化方法,对于ReLU激活函数的神经网络,使用该方法可以加速训练过程的收敛。
  2. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). PMLR. 【影响因子=1.4,ICML 2015】

    • 内容概述:该论文提出了批量归一化(BN)方法,通过对每一层输入进行归一化处理,可以加速神经网络的训练过程,并提高模型的稳定性。
  3. Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450. 【arxiv论文】

    • 内容概述:该论文提出了层归一化(LN)方法,特别适用于序列数据的处理,如循环神经网络(RNN)和Transformer等。
  4. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. 【影响因子=2.7,JMLR 2014】

    • 内容概述:该论文提出了Dropout方法,通过在训练过程中随机丢弃部分神经元,可以有效防止神经网络的过拟合。
  5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 【影响因子=14,jcr一区】

    • 内容概述:该书是深度学习领域的权威著作,详细介绍了神经网络的原理、算法和应用,包括调参技巧、优化算法等核心内容。

Keywords
#神经网络 #调参技巧 #过拟合 #学习率 #批量大小 #Dropout比率 #初始化方法 #层归一化 #批量归一化 #层次化模型结构 #数据增强 #随机数种子 #交叉验证 #优化器选择 #早停策略

通过上述的调参技巧,我们可以更加系统地优化神经网络的性能,提升其在各种任务上的表现。每一步的调整都可能对最终的结果产生显著的影响,因此,在实践中需要不断地尝试和验证,以找到最适合当前任务的调参策略。

这篇关于【干货】神经网络调参技巧大揭秘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133315

相关文章

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和