看demo学算法之 贝叶斯网络

2024-09-05 02:20
文章标签 算法 网络 贝叶斯 demo

本文主要是介绍看demo学算法之 贝叶斯网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,这里是小琳AI课堂!今天我们一起来学习贝叶斯网络,这是一种非常酷的图形模型,它能帮助我们理解和处理变量之间的条件依赖关系。🎨📊

贝叶斯网络基础

首先,贝叶斯网络是基于贝叶斯定理的,这个定理可以帮助我们通过已知的变量来推测未知变量的概率。想象一下,每个节点代表一个随机变量,而边则表示这些变量之间的依赖关系。是不是很神奇?✨

网络结构

在贝叶斯网络中,每个节点都有自己的概率分布,这表示了该节点在其父节点(直接指向它的节点)的条件下的发生概率。通过这些概率分布和节点间的依赖关系,我们可以计算网络中任何变量的概率分布。🔗

应用场景

贝叶斯网络在许多领域都有应用,比如医疗诊断、风险评估和机器学习。它们提供了一种有效的方式来处理不确定性和复杂性,并帮助我们做出更加明智的决策。🏥💡

示例:亚洲疾病数据集

为了更好地理解贝叶斯网络,我们可以使用一个经典的数据集——“亚洲疾病”数据集。这个数据集包括年龄、血压、胆固醇水平、吸烟、糖尿病和心脏疾病等变量。这些变量之间的依赖关系可以用贝叶斯网络来表示。🌐

构建和推理网络

我们可以使用Python和pgmpy库来构建和推理这个贝叶斯网络。这包括定义网络的结构、指定概率分布,并使用适当的算法来进行推理。🤖💻

代码示例

这里有一段示例代码,它首先定义了一个贝叶斯网络,然后计算了在特定情况下患有心脏疾病的概率。是不是很有趣?🔍📈

from pgmpy.models import BayesianModel
from pgmpy.factors.discrete import TabularCPD
from pgmpy.inference import VariableElimination
# 定义贝叶斯网络的结构
model = BayesianModel([('A', 'H'), ('B', 'H'), ('S', 'H'), ('X', 'H'), ('D', 'H')
])
# 定义条件概率分布(CPD)
cpd_a = TabularCPD('A', 2, values=[[0.6], [0.4]])
cpd_b = TabularCPD('B', 2, values=[[0.7], [0.3]])
cpd_s = TabularCPD('S', 2, values=[[0.6], [0.4]])
cpd_x = TabularCPD('X', 2, values=[[0.5], [0.5]])
cpd_d = TabularCPD('D', 2, values=[[0.1], [0.9]])
cpd_h = TabularCPD('H', 2, evidence=['A', 'B', 'S', 'X', 'D'], values=[[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7],[0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3]
], evidence_card=[2, 2, 2, 2, 2])
# 将CPD添加到模型中
model.add_cpds(cpd_a, cpd_b, cpd_s, cpd_x, cpd_d, cpd_h)
# 检查模型是否有效
model.check_model()
# 进行推理
infer = VariableElimination(model)
posterior_prob = infer.query(['H'], evidence={'A': 1, 'B': 1, 'S': 1, 'X': 1, 'D': 0})
posterior_prob['H']

希望这个解释能帮助你更好地理解贝叶斯网络!如果你有任何问题或需要进一步的澄清,随时评论区留言哦!😊🚀

本期的小琳AI课堂就到这里,我们下次再见!👋🌟

这篇关于看demo学算法之 贝叶斯网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137702

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1