Darknet+ros+realsenseD435i+yolo(ubuntu20.04)

2024-05-16 00:12

本文主要是介绍Darknet+ros+realsenseD435i+yolo(ubuntu20.04),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、下载Darknet_ros

mkidr -p yolo_ws/src
cd yolo_ws/src
git clone --recursive https://github.com/leggedrobotics/darknet_ros.git
#因为这样克隆的darknet文件夹是空的,将darknet_ros中的darknet的文件替换成如下
cd darknet_ros
git clone https://github.com/arnoldfychen/darknet.git
#进入darknet目录下进行make
cd darknet
make

修改darknet文件夹下的Makefile文件

修改 darknet_ros/darknet_ros/CMakeLists.txt

将这算力改成自己电脑的算力

make可能会报如下错误:

一、

fatal error:cudnn_ros_infer.h:没有那个文件或目录

解决办法:

根据官方链接cuDNN Archive | NVIDIA Developer,选择与cuda版本相匹配的cudnn下载tar文件。在这里,我下载的是v8.9.6,可与cuda 12.x等版本适配。

解压cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz后,进入该目录,将lib内的文件都复制到目录/usr/local/cuda-11.6/lib64/中,将include内的文件都复制到目录/usr/local/cuda-11.6/include/中

cd ./cudnn-linux-x86_64-8.9.6.50_cuda11-archive
sudo cp ./lib/* /usr/local/cuda-12.2/lib64/
sudo cp ./include/* /usr/local/cuda-12.2/include/

二、

 fatal error:opencv2/opencvhpp:没有那个文件或目录

解决办法:修改修改darknet文件夹下的Makefile文件

三、

 error: ‘IplImage’ does not name a type    12 | IplImage *image_to_ipl(image im)

home/darknet/src/imageopencv.cpp 修改如下:

#ifdef OPENCV#include "stdio.h"
#include "stdlib.h"
#include "opencv2/opencv.hpp"
#include "image.h"using namespace cv;extern "C" {/*IplImage *image_to_ipl(image im)
{int x,y,c;IplImage *disp = cvCreateImage(cvSize(im.w,im.h), IPL_DEPTH_8U, im.c);int step = disp->widthStep;for(y = 0; y < im.h; ++y){for(x = 0; x < im.w; ++x){for(c= 0; c < im.c; ++c){float val = im.data[c*im.h*im.w + y*im.w + x];disp->imageData[y*step + x*im.c + c] = (unsigned char)(val*255);}}}return disp;
}image ipl_to_image(IplImage* src)
{int h = src->height;int w = src->width;int c = src->nChannels;image im = make_image(w, h, c);unsigned char *data = (unsigned char *)src->imageData;int step = src->widthStep;int i, j, k;for(i = 0; i < h; ++i){for(k= 0; k < c; ++k){for(j = 0; j < w; ++j){im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.;}}}return im;
}*//*Mat image_to_mat(image im)
{image copy = copy_image(im);constrain_image(copy);if(im.c == 3) rgbgr_image(copy);IplImage *ipl = image_to_ipl(copy);Mat m = cvarrToMat(ipl, true);cvReleaseImage(&ipl);free_image(copy);return m;
}image mat_to_image(Mat m)
{IplImage ipl = m;image im = ipl_to_image(&ipl);rgbgr_image(im);return im;
}*/Mat image_to_mat(image im)
{image copy = copy_image(im);constrain_image(copy);if(im.c == 3) rgbgr_image(copy);Mat m(cv::Size(im.w,im.h), CV_8UC(im.c));int x,y,c;int step = m.step;for(y = 0; y < im.h; ++y){for(x = 0; x < im.w; ++x){for(c= 0; c < im.c; ++c){float val = im.data[c*im.h*im.w + y*im.w + x];m.data[y*step + x*im.c + c] = (unsigned char)(val*255);}}}free_image(copy);return m;// free_image(copy);
// return m;
//     IplImage *ipl = image_to_ipl(copy);
//     Mat m = cvarrToMat(ipl, true);
//     cvReleaseImage(&ipl);
//     free_image(copy);
//     return m;
}image mat_to_image(Mat m)
{int h = m.rows;int w = m.cols;int c = m.channels();image im = make_image(w, h, c);unsigned char *data = (unsigned char *)m.data;int step = m.step;int i, j, k;for(i = 0; i < h; ++i){for(k= 0; k < c; ++k){for(j = 0; j < w; ++j){im.data[k*w*h + i*w + j] = data[i*step + j*c + k]/255.;}}}rgbgr_image(im);return im;// IplImage ipl = m;// image im = ipl_to_image(&ipl);// rgbgr_image(im);// return im;
}void *open_video_stream(const char *f, int c, int w, int h, int fps)
{VideoCapture *cap;if(f) cap = new VideoCapture(f);else cap = new VideoCapture(c);if(!cap->isOpened()) return 0;//if(w) cap->set(CV_CAP_PROP_FRAME_WIDTH, w);//if(h) cap->set(CV_CAP_PROP_FRAME_HEIGHT, w);//if(fps) cap->set(CV_CAP_PROP_FPS, w);if(w) cap->set(CAP_PROP_FRAME_WIDTH, w);if(h) cap->set(CAP_PROP_FRAME_HEIGHT, w);if(fps) cap->set(CAP_PROP_FPS, w);return (void *) cap;
}image get_image_from_stream(void *p)
{VideoCapture *cap = (VideoCapture *)p;Mat m;*cap >> m;if(m.empty()) return make_empty_image(0,0,0);return mat_to_image(m);
}image load_image_cv(char *filename, int channels)
{int flag = -1;if (channels == 0) flag = -1;else if (channels == 1) flag = 0;else if (channels == 3) flag = 1;else {fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);}Mat m;m = imread(filename, flag);if(!m.data){fprintf(stderr, "Cannot load image \"%s\"\n", filename);char buff[256];sprintf(buff, "echo %s >> bad.list", filename);system(buff);return make_image(10,10,3);//exit(0);}image im = mat_to_image(m);return im;
}int show_image_cv(image im, const char* name, int ms)
{Mat m = image_to_mat(im);imshow(name, m);int c = waitKey(ms);if (c != -1) c = c%256;return c;
}void make_window(char *name, int w, int h, int fullscreen)
{namedWindow(name, WINDOW_NORMAL); if (fullscreen) {//setWindowProperty(name, CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);setWindowProperty(name, WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);} else {resizeWindow(name, w, h);if(strcmp(name, "Demo") == 0) moveWindow(name, 0, 0);}
}}#endif

将之前在darknet文件进行make出错的文件删除,再重新编译

sudo make clean
make

在工作空间中安装realsense_ros与机械臂启动包

cd yolo_ws
cd src
#安装realsense_ros
git clone https://github.com/IntelRealSense/realsense-ros.git
git clone https://github.com/UniversalRobots/Universal_Robots_ROS_Driver.git Universal_Robots_ROS_Driver
git clone -b calibration_devel https://github.com/fmauch/universal_robot.git fmauch_universal_robotcd ..
catkin_make -DCMAKE_BUILD_TYPE=Release

使用VScode 在工作空间的src目录下创建新的文件夹std_msg,并添加相关的依赖:rospy roscpp std_msgs

在std_msg文件中创建scripts文件夹,创建两个py文件

一个为yolo目标检测文件及机械臂运动程序

#!/usr/bin/env python
# -*- coding: utf-8 -*-import rospy
from darknet_ros_msgs.msg import BoundingBoxes, BoundingBox
from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge
import numpy as np
import tf2_ros
import tf2_geometry_msgs
from geometry_msgs.msg import Pointclass Readyolo:def __init__(self):rospy.init_node('grasping_node', anonymous=True)self.bridge = CvBridge()self.tf_buffer = tf2_ros.Buffer()self.tf_listener = tf2_ros.TransformListener(self.tf_buffer)self.rgb_image_sub = rospy.Subscriber('/camera/color/image_raw', Image, self.rgb_image_callback)self.depth_image_sub = rospy.Subscriber('/camera/depth/image_rect_raw', Image, self.depth_image_callback)self.camera_info_sub = rospy.Subscriber('/camera/depth/camera_info', CameraInfo, self.camera_info_callback)self.object_detection = rospy.Subscriber('/darknet_ros/bounding_boxes', BoundingBoxes, self.yolo)self.pub = rospy.Publisher('/object_camera_coordinates', Point, queue_size=10)self.depth_intrinsics = Noneself.rgb_image = Noneself.depth_image = Nonedef camera_info_callback(self, msg):self.depth_intrinsics = msgprint(self.depth_intrinsics.K[0])print(self.depth_intrinsics.K[4])print()def rgb_image_callback(self, msg):self.rgb_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding="passthrough")def depth_image_callback(self, msg):self.depth_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding="passthrough")self.process_yolo_results()def process_yolo_results(self):if self.depth_intrinsics is None or self.rgb_image is None or self.depth_image is None:returnfor box in self.bounding_boxes:if box.Class == "bottle":yolo_center_point_x = (box.xmin + box.xmax) / 2yolo_center_point_y = (box.ymin + box.ymax) / 2depth = self.depth_image[int(yolo_center_point_y)][int(yolo_center_point_x)]camera_point = self.convert_pixel_to_camera_coordinates(yolo_center_point_x, yolo_center_point_y, depth)print("OI:",yolo_center_point_x,yolo_center_point_y)point_msg = Point(x=camera_point[0], y=camera_point[1], z=camera_point[2])self.pub.publish(point_msg)# self.pub.publish(box)def convert_pixel_to_camera_coordinates(self, u, v, depth):if self.depth_intrinsics is None:return Nonefx = self.depth_intrinsics.K[0]fy = self.depth_intrinsics.K[4]cx = self.depth_intrinsics.K[2]cy = self.depth_intrinsics.K[5]camera_x = (u - cx) * depth / fx/1000camera_y = (v - cy) * depth / fy/1000camera_z = float(depth)/1000print("camera_link:",camera_x,camera_y,camera_z)return [camera_x, camera_y, camera_z]def yolo(self, msg):self.bounding_boxes = msg.bounding_boxesself.process_yolo_results()def main():readyolo = Readyolo()rospy.spin()if __name__ == '__main__':main()
#!/usr/bin/env python
# -*- coding: utf-8 -*-import rospy, sys
import moveit_commander
from geometry_msgs.msg import PoseStamped, Pose
import tf2_geometry_msgs
import tf2_ros
from geometry_msgs.msg import Pointclass MoveItIkDemo:def __init__(self):# 初始化move_group的APImoveit_commander.roscpp_initialize(sys.argv)# 初始化ROS节点rospy.init_node('moveit_it_demo')# 初始化需要使用move group控制的机械臂中的arm groupself.arm = moveit_commander.MoveGroupCommander('manipulator')# 获取终端link的名称,这个在setup assistant中设置过了end_effector_link = self.arm.get_end_effector_link()# 设置目标位置所使用的参考坐标系reference_frame = "base"self.arm.set_pose_reference_frame(reference_frame)# 当运动规划失败后,允许重新规划self.arm.allow_replanning(True)# 设置位置(单位: 米)和姿态(单位:弧度)的允许误差# self.arm.set_goal_position_tolerance(0.001)# self.arm.set_goal_orientation_tolerance(0.01)self.arm.set_goal_position_tolerance(0.001000)self.arm.set_goal_orientation_tolerance(0.01000)# 设置允许的最大速度和加速度self.arm.set_max_acceleration_scaling_factor(0.5)self.arm.set_max_velocity_scaling_factor(0.5)# 控制机械臂先回到初始位置# self.arm.set_named_target('home')# self.arm.go(wait=True)# rospy.sleep(1)# 设置机械臂工作空间中的目标位姿,位置使用x y z坐标描述# 姿态使用四元数描述,基于base_link坐标系# target_pose = PoseStamped()# # 参考坐标系,前面设置了# target_pose.header.frame_id = reference_frame# target_pose.header.stamp = rospy.Time.now()# # 末端位置# target_pose.pose.position.x = 0.359300# target_pose.pose.position.y = 0.163600# target_pose.pose.position.z = 0.278700# # 末端姿态,四元数# target_pose.pose.orientation.x = 0.433680# target_pose.pose.orientation.y = 0.651417# target_pose.pose.orientation.z = 0.508190# target_pose.pose.orientation.w = 0.359611# # 设置机械臂当前的状态作为运动初始状态# self.arm.set_start_state_to_current_state()# # 设置机械臂终端运动的目标位姿# self.arm.set_pose_target(target_pose)# # 规划运动路径,返回虚影的效果# plan_success,traj,planning_time,error_code = self.arm.plan()# # traj = self.arm.plan()# # 按照规划的运动路径控制机械臂运动# self.arm.execute(traj)# # 执行完休息一秒# rospy.sleep(1)# 新建一个接收方用来接受话题并处理self.pose_sub = rospy.Subscriber("/object_camera_coordinates", Point, self.callback) def transform_pose(self, input_pose, from_frame, to_frame):try:tf_buffer = tf2_ros.Buffer()listener = tf2_ros.TransformListener(tf_buffer)transform = tf_buffer.lookup_transform(to_frame, from_frame, rospy.Time(0), rospy.Duration(1.0))transformed_pose = tf2_geometry_msgs.do_transform_pose(input_pose, transform)return transformed_poseexcept(tf2_ros.LookupException, tf2_ros.ConnectivityException, tf2_ros.ExtrapolationoException) as ex:rospy.logerr("TF2 error:%s",str(ex))return Nonedef callback(self, p):global object_position, grasp_poseobject_position = ptemp_pose = PoseStamped()temp_pose.header.frame_id = "camera_link"temp_pose.pose.position = ptemp_pose.pose.orientation.w = 1.0transformed_pose = self.transform_pose(temp_pose, "camera_link", "base")if transformed_pose is not None:grasp_pose = transformed_poseself.arm.set_start_state_to_current_state()self.arm.set_pose_target(grasp_pose)plan_success,traj,planning_time,error_code = self.arm.plan()self.arm.execute(traj)rospy.sleep(1)def main():moveitikdemo = MoveItIkDemo()rospy.spin()if __name__ == '__main__':main()

修改py文件权限,并在CMakeLists.txt进行相对应的修改

这篇关于Darknet+ros+realsenseD435i+yolo(ubuntu20.04)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993322

相关文章

Ubuntu20.04离线安装Docker

1.下载3个docker离线安装包,下载网址: https://download.docker.com/linux/ubuntu/dists/xenial/pool/stable/amd64/ 2.把3个离线安装包拷贝到ubuntu本地执行以下命令 sudo dpkg -i containerd.io_1.4.6-1_amd64.deb sudo dpkg -i docker-ce-c

ROS话题通信流程自定义数据格式

ROS话题通信流程自定义数据格式 需求流程实现步骤定义msg文件编辑配置文件编译 在 ROS 通信协议中,数据载体是一个较为重要组成部分,ROS 中通过 std_msgs 封装了一些原生的数据类型,比如:String、Int32、Int64、Char、Bool、Empty… 但是,这些数据一般只包含一个 data 字段,结构的单一意味着功能上的局限性,当传输一些复杂的数据,比如:

YOLO v3 训练速度慢的问题

一天一夜出了两个模型,仅仅迭代了200次   原因:编译之前没有将Makefile 文件里的GPU设置为1,编译的是CPU版本,必须训练慢   解决方案: make clean  vim Makefile make   再次训练 速度快了,5分钟迭代了500次

CMake笔记之CMAKE_INSTALL_PREFIX详解以及ROS中可执行文件为什么会在devel_lib中

CMake笔记之CMAKE_INSTALL_PREFIX详解以及ROS中可执行文件为什么会在devel_lib中 code review! 文章目录 CMake笔记之CMAKE_INSTALL_PREFIX详解以及ROS中可执行文件为什么会在devel_lib中1.`CMAKE_INSTALL_PREFIX`详解变量作用设置 `CMAKE_INSTALL_PREFIX`示例影响范围常

ROS话题通信机制实操C++

ROS话题通信机制实操C++ 创建ROS工程发布方(二狗子)订阅方(翠花)编辑配置文件编译并执行注意订阅的第一条数据丢失 ROS话题通信的理论查阅ROS话题通信流程理论 在ROS话题通信机制实现中,ROS master 不需要实现,且连接的建立也已经被封装了,需要关注的关键点有三个: 发布方(二狗子)订阅方(翠花)数据(此处为普通文本) 创建ROS工程 创建一个ROS工程

[数据集][目标检测]棉花叶子害虫检测数据集VOC+YOLO格式595张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):595 标注数量(xml文件个数):595 标注数量(txt文件个数):595 标注类别数:1 标注类别名称:["insect"] 每个类别标注的框数: insect 框数 = 823 总框数:823 使用标注工具:

vmware虚拟机安装ubuntu20.04

1.下载Ubuntu 20.04的ISO镜像 Index of /ubuntu-releases/ 2.安装VMware 3.创建新的虚拟机:打开VMware,选择“创建新的虚拟机”或通过文件菜单新建虚拟机。 4.选择典型,然点点击下一步: 5.选择稍后安装操作系统: 6.选择Linux 选择版本为Ubuntu64位,然后点下一步: 7.虚拟机名称随便取,然后选择需要

关于ROS包中CMakeList.txt中几个常用的命令的作用 ——————(二)

目录 (5)catkin_package() (6)add_library()    (7)add_dependencies( []...) 接(一)关于ROS包中CMakeList.txt中几个常用的命令的作用 ——————(一)_u012057432的博客-CSDN博客,以下是其他相关的配置命令,有些不是必要的,但是却十分常用,但是也是十分重要的。 (5)catkin_packa

关于ROS包中CMakeList.txt中几个常用的命令的作用 ——————(一)

目录 (1)find_package(catkin REQUIRED  COMPONENTS  ...) (2)include_directories()  (3)add_executable(  src1 src2 ...)   (简易写法) (4)target_link_libraries( lib1  lib2 ...) (简易写法,lib是依赖库的路径) 重点的命令总结:

【自动驾驶】ROS小车系统

文章目录 小车组成轮式运动底盘的组成轮式运动底盘的分类轮式机器人的控制方式感知传感器ROS决策主控ROS介绍ROS的坐标系ROS的单位机器人电气连接变压模块运动底盘的电气连接ROS主控与传感器的电气连接ROS主控和STM32控制器两种控制器的功能运动底盘基本组成电池电机控制器与驱动器 小车组成 轮式运动底盘的组成 • 电源电池 提供能源。 • 控制器、驱动器 控制器