数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

本文主要是介绍数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

目录

  • 数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作
    • 编程题
      • 1. 给定一组离散数据点,使用 scipy.interpolate 中的插值方法(如线性插值、样条插值等)对其进行插值,并绘制插值结果。
      • 2. 使用 scipy.optimize 中的优化算法,找到函数的最小值点,并在图中标出最小值点。
      • 3. 绘制正态分布数据的直方图和概率密度函数曲线
      • 4. 对一组实验数据进行曲线拟合,使用 scipy.optimize.curve_fit 函数拟合一个非线性函数,并绘制原始数据和拟合曲线。
      • 5. 对以下函数进行数值积分,并绘制函数曲线以及积分结果的区域。
      • 6. 使用 scipy.ndimage 中的函数对“gdufe_logo.jpg”进行平滑处理(模糊处理、高斯滤波)和边缘处理(Sobel滤波),并展示原始图片和处理后的效果。
      • 7. 对 "gdufe.jpeg" 图像进行奇异值分解,并使用20、100、200个奇异值重建图像,并将原始图像与重建图像进行可视化。
      • 8. 对太阳黑子数据集,采用scipy.signal.convolve 对其进行移动平均卷积。原始信号和卷积后的信号被绘制在同一图表上进行比较。
      • 9. 给定一段时间的销售额,使用 scipy.stats.linregress 进行线性回归,预测未来的销售额。
      • 10. 对 "形态学.jpg" 图像,应用膨胀、腐蚀、开运算和闭运算,并可视化处理后的图像。

编程题

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd# 支持中文
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']  # SimHei 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

1. 给定一组离散数据点,使用 scipy.interpolate 中的插值方法(如线性插值、样条插值等)对其进行插值,并绘制插值结果。

from scipy.interpolate import interp1d# 给定离散数据点
x = np.linspace(0, 30, 10)
y = np.sin(x)# 添加噪声
np.random.seed(20240501)
noise = np.random.normal(0, 0.1, len(y))
y_noisy = y + noise# 线性插值
linear_interp = interp1d(x, y_noisy, kind='linear')# 样条插值
cubic_interp = interp1d(x, y_noisy, kind='cubic')# 在新的 x 值上进行插值
x_new = np.linspace(0, 30, 1000)
y_linear = linear_interp(x_new)
y_cubic = cubic_interp(x_new)# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(x, y_noisy, 'o', label='Noisy Data')
plt.plot(x_new, y_linear, label='Linear Interpolation')
plt.plot(x_new, y_cubic, label='Cubic Spline Interpolation')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Interpolation of Noisy Data')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

2. 使用 scipy.optimize 中的优化算法,找到函数的最小值点,并在图中标出最小值点。

目标函数为:

f ( x ) = sin ⁡ ( 3 x ) + 1.5 x 2 − 2 x f(x) = \sin(3x) + 1.5x^2 - 2x f(x)=sin(3x)+1.5x22x

from scipy.optimize import minimize# 定义目标函数
def objective_function(x):return np.sin(3 * x) + 1.5 * x**2 - 2 * x# 定义搜索空间
bounds = [(-5, 5)]# 使用全局优化算法(差分进化算法)寻找最小值
result = differential_evolution(objective_function, bounds)# 打印最小值点
min_x = result.x
min_y = result.fun
print("Minimum point:", min_x)
print("Minimum value:", min_y)# 绘制目标函数
x_vals = np.linspace(-5, 5, 400)
y_vals = objective_function(x_vals)plt.figure(figsize=(10, 6))
plt.plot(x_vals, y_vals, label='Objective Function')
plt.scatter(min_x, min_y, color='red', label='Minimum Point')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('Global Minimization of Objective Function')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

3. 绘制正态分布数据的直方图和概率密度函数曲线

from scipy.stats import norm# 生成正态分布的随机样本
np.random.seed(20240501)
sample_size = 1000
mean = 0
std_dev = 1
data = np.random.normal(mean, std_dev, sample_size)# 添加噪声
noise_mean = 0
noise_std_dev = 0.2
noise = np.random.normal(noise_mean, noise_std_dev, sample_size)
noisy_data = data + noise# 绘制直方图
plt.figure(figsize=(10, 6))
plt.hist(noisy_data, bins=30, density=True, alpha=0.6, color='b', label='Histogram')# 绘制概率密度函数曲线
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mean, std_dev)
plt.plot(x, p, 'k', linewidth=2, label='PDF')plt.title('Histogram and PDF of Noisy Normal Distribution')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

4. 对一组实验数据进行曲线拟合,使用 scipy.optimize.curve_fit 函数拟合一个非线性函数,并绘制原始数据和拟合曲线。

from scipy.optimize import curve_fit# 定义非线性函数
def nonlinear_function(x, a, b, c):return a * np.sin(b * x) + c# 生成实验数据
np.random.seed(20240501)
x_data = np.linspace(0, 10, 100)
y_data = 2 * np.sin(1.5 * x_data) + 1 + np.random.normal(0, 0.5, len(x_data))# 使用 curve_fit 函数拟合非线性函数
popt, pcov = curve_fit(nonlinear_function, x_data, y_data)# 获取拟合参数
a_fit, b_fit, c_fit = popt# 绘制原始数据和拟合曲线
plt.figure(figsize=(10, 6))
plt.scatter(x_data, y_data, label='Original Data')
plt.plot(x_data, nonlinear_function(x_data, a_fit, b_fit, c_fit), 'r-', label='Fitted Curve')
plt.title('Curve Fitting with Nonlinear Function')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

5. 对以下函数进行数值积分,并绘制函数曲线以及积分结果的区域。

要积分的函数为:

f ( x ) = sin ⁡ ( x ) + 1 2 cos ⁡ ( 2 x ) f(x) = \sin(x) + \frac{1}{2} \cos(2x) f(x)=sin(x)+21cos(2x)

对该函数从 x = 0 x=0 x=0 x = 2 π x=2\pi x=2π 进行数值积分。

from scipy.integrate import quad# 以下编码
# 定义函数
def f(x):return np.sin(x) + 0.5 * np.cos(2 * x)# 定义积分区间
a = 0
b = 2 * np.pi# 数值积分
integral_result, error = quad(f, a, b)# 生成 x 值
x_values = np.linspace(a, b, 100)# 计算函数值
y_values = f(x_values)# 绘制函数曲线和积分区域
plt.figure(figsize=(10, 6))
plt.plot(x_values, y_values, label='Function Curve')
plt.fill_between(x_values, y_values, alpha=0.3, label='Integral Area')
plt.title('Function Curve and Integral Area')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.axhline(0, color='black', linewidth=0.5)  # 绘制 x 轴
plt.axvline(0, color='black', linewidth=0.5)  # 绘制 y 轴
plt.legend()
plt.grid(True)
plt.show()print("Integral result:", integral_result)

在这里插入图片描述

6. 使用 scipy.ndimage 中的函数对“gdufe_logo.jpg”进行平滑处理(模糊处理、高斯滤波)和边缘处理(Sobel滤波),并展示原始图片和处理后的效果。

from scipy import ndimage
from PIL import Image# 读取图像
image = Image.open("../data/gdufe_logo.jpg")
image = image.convert("L")  # 将图像转换为灰度图像# 平滑处理(高斯滤波)
smoothed_image = ndimage.gaussian_filter(image, sigma=3)# 边缘处理(Sobel滤波)
sobel_image = ndimage.sobel(image)# 展示原始图片和处理后的效果
plt.figure(figsize=(12, 6))plt.subplot(1, 3, 1)
plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.axis('off')plt.subplot(1, 3, 2)
plt.imshow(smoothed_image, cmap='gray')
plt.title('Smoothed Image (Gaussian Filter)')
plt.axis('off')plt.subplot(1, 3, 3)
plt.imshow(sobel_image, cmap='gray')
plt.title('Edges (Sobel Filter)')
plt.axis('off')plt.show()

在这里插入图片描述

7. 对 “gdufe.jpeg” 图像进行奇异值分解,并使用20、100、200个奇异值重建图像,并将原始图像与重建图像进行可视化。

注意:用摊平后的图像进行 SVD 操作,然后再重塑展现,从而可以处理彩色RGB图像。

from PIL import Image
from scipy.linalg import svd# 读取彩色图像
image = Image.open("../data/gdufe.jpeg")# 将图像转换为 numpy 数组
image_array = np.array(image)# 获取图像的尺寸
m, n, c = image_array.shape# 摊平图像数组
flat_image_array = image_array.reshape(-1, c)# 进行奇异值分解
U, s, Vt = np.linalg.svd(flat_image_array, full_matrices=False)# 重建图像函数
def reconstruct_image(U, s, Vt, num_singular_values):# 使用指定数量的奇异值重建图像reconstructed_image_array = np.dot(U[:, :num_singular_values], np.dot(np.diag(s[:num_singular_values]), Vt[:num_singular_values, :]))# 重塑图像数组形状reconstructed_image_array = np.clip(reconstructed_image_array, 0, 255).astype(np.uint8)reconstructed_image = reconstructed_image_array.reshape(m, n, c)return Image.fromarray(reconstructed_image)# 使用不同数量的奇异值重建图像并可视化
num_singular_values_list = [20, 100, 200]plt.figure(figsize=(15, 5))for i, num_singular_values in enumerate(num_singular_values_list):plt.subplot(1, len(num_singular_values_list), i + 1)reconstructed_image = reconstruct_image(U, s, Vt, num_singular_values)plt.imshow(reconstructed_image)plt.title(f'{num_singular_values} Singular Values')plt.axis('off')plt.show()

在这里插入图片描述

8. 对太阳黑子数据集,采用scipy.signal.convolve 对其进行移动平均卷积。原始信号和卷积后的信号被绘制在同一图表上进行比较。

from scipy import signal
from statsmodels import datasets# 加载太阳黑子数据集
sp = datasets.sunspots.load_pandas().data['SUNACTIVITY']# 定义移动平均窗口大小
window_size = 11# 计算移动平均
moving_avg = np.convolve(sp, np.ones(window_size)/window_size, mode='valid')# 创建时间轴
time = np.arange(len(sp))# 绘制原始信号和移动平均后的信号
plt.figure(figsize=(10, 6))
plt.plot(time, sp, label='Original Signal')
plt.plot(time[window_size-1:], moving_avg, label=f'Moving Average (Window Size {window_size})')
plt.title('Sunspot Activity with Moving Average Convolution')
plt.xlabel('Time')
plt.ylabel('Sunspot Activity')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

9. 给定一段时间的销售额,使用 scipy.stats.linregress 进行线性回归,预测未来的销售额。

from scipy.stats import linregress# 给定时间段的销售额数据
sales = np.array([100, 120, 130, 140, 150, 160, 170, 180, 190, 200])
time = np.arange(len(sales))# 进行线性回归
slope, intercept, r_value, p_value, std_err = linregress(time, sales)# 使用线性回归方程预测未来销售额
future_time = np.arange(len(sales), len(sales) + 5)  # 假设预测未来5个时间点
future_sales = slope * future_time + intercept# 绘制原始销售额和线性回归线
plt.figure(figsize=(10, 6))
plt.scatter(time, sales, label='Actual Sales')
plt.plot(time, slope * time + intercept, color='red', label='Linear Regression')
plt.scatter(future_time, future_sales, color='green', label='Predicted Sales')
plt.title('Sales Linear Regression and Prediction')
plt.xlabel('Time')
plt.ylabel('Sales')
plt.legend()
plt.grid(True)
plt.show()# 输出预测未来销售额
print("预测未来销售额:")
for t, s in zip(future_time, future_sales):print(f"时间 {t}: 销售额 {s}")

在这里插入图片描述

10. 对 “形态学.jpg” 图像,应用膨胀、腐蚀、开运算和闭运算,并可视化处理后的图像。

运算参数:size = (10, 10)

from PIL import Image
from scipy import ndimage# 打开图像
image = Image.open("../data/形态学.jpg")# 将图像转换为灰度图像
image_gray = image.convert("L")# 转换为数组
image_array = np.array(image_gray)# 定义运算参数
size = (10, 10)# 应用膨胀
dilated_image = ndimage.grey_dilation(image_array, size=size)# 应用腐蚀
eroded_image = ndimage.grey_erosion(image_array, size=size)# 应用开运算
opened_image = ndimage.grey_opening(image_array, size=size)# 应用闭运算
closed_image = ndimage.grey_closing(image_array, size=size)# 可视化处理后的图像
plt.figure(figsize=(12, 8))plt.subplot(2, 3, 1)
plt.imshow(image_array, cmap='gray')
plt.title('Original Image')plt.subplot(2, 3, 2)
plt.imshow(dilated_image, cmap='gray')
plt.title('Dilated Image')plt.subplot(2, 3, 3)
plt.imshow(eroded_image, cmap='gray')
plt.title('Eroded Image')plt.subplot(2, 3, 4)
plt.imshow(opened_image, cmap='gray')
plt.title('Opened Image')plt.subplot(2, 3, 5)
plt.imshow(closed_image, cmap='gray')
plt.title('Closed Image')plt.tight_layout()
plt.show()

在这里插入图片描述

这篇关于数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987587

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的