基于FPGA的数字信号处理(11)--定点数的舍入模式(2)向最临近值取整nearest

本文主要是介绍基于FPGA的数字信号处理(11)--定点数的舍入模式(2)向最临近值取整nearest,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在之前的文章介绍了定点数为什么需要舍入和几种常见的舍入模式。今天我们再来看看另外一种舍入模式:向最临近值取整nearest

10进制数的nearest

nearest向最临近值方向取整。它的舍入方式和四舍五入非常类似,都是舍入到最近的整数,比如1.75 nearest到2,-0.25 nearest到0等。二者唯一的区别在于对0.5这类数据的处理上。

  • 0.5的round结果是1,-0.5的round结果是-1
  • 0.5的nearest结果是1,-0.5的nearest结果是0,也就是说对于0.5(1.5/2.5等)这类数据,它们的nearest结果是都是向上取整

以-2到1.75之间的16个数据(步长0.25)为例,它们的nearest结果是这样的:

从上图可以看到:

  • 正数的nearest,分为两个部分:

    • 小数部分小于等于4时就把小数部分(或者约定精度外的部分)丢掉。例如1.25 >> 1,1.0 >> 1 等
    • 小数部分大于等于5时就把小数部分(或者约定精度外的部分)丢掉然后+1。例如1.5 >> 1 >> 1 + 1 >> 2,0.75 >> 0 >> 0+1 >> 1 等
  • 负数的nearest,也分为两个部分:

    • 小数部分小于等于4时就把小数部分(或者约定精度外的部分)丢掉。例如-1.25 >> -1,-1.0 >> -1 等
    • 小数部分大于等于5时就把小数部分(或者约定精度外的部分)丢掉然后-1。例如 -1.5 >> -1 >> -1 - 1 >> -2,-0.75 >> 0 >> 0-1 >> -1 等
  • 0的nearest,就是直接丢掉小数部分

2进制数的nearest

2进制数的nearest和10进制的nearest类似。以Q4.2格式的定点数(字长4位,小数2位的有符号数)为例,对于负数的小数部分的处理:

  • -2(d) = 10_00(b) nearest后的值为 -2,等价于 10,即舍弃小数部分后的值(10)
  • -1.75(d) = 10_01(b) nearest后的值为 -2,等价于 10,即舍弃小数部分后的值(10)
  • -1.5(d) = 10_10(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(10)再加1
  • -1.25(d) = 10_11(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(10)再加1
  • -1(d) = 11_00(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(11)
  • -0.75(d) = 11_01(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(11)
  • -0.5(d) = 11_10(b) nearest后的值为 0,等价于 00,即舍弃小数部分后的值(11)再加1
  • -0.25(d) = 11_11(b) nearest后的值为 0,等价于 00,即舍弃小数部分后的值(11)再加1

对于正数的小数部分的处理:

  • 1.75(d) = 01_11(b) nearest后的值为 2,此时溢出了,需要扩展位宽,处理方式也是舍弃小数部分的值(001)再加1即010
  • 1.5(d) = 01_10(b) nearest后的值为 2,此时溢出了,需要扩展位宽,处理方式也是舍弃小数部分的值(001)再加1即010
  • 1.25(d) = 01_01(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(01)的值
  • 1(d) = 01_00(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(01)的值
  • 0.75(d) = 00_11(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(00)的值再加1
  • 0.5(d) = 00_10(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(00)的值再加1
  • 0.25(d) = 00_01(b) nearest后的值为 0,等价于 00,即舍弃小数部分后(00)的值

对于0的处理:直接舍弃小数部分。

总结一下,就是:

  • 对于正数的nearest处理:首先舍掉小数位,然后加一个进位值:
    • 当小数部分的最高位为0时,说明这个数的小数部分是小于0.5的,所以不需要进位,此时的进位值为0。
    • 当小数部分的最高位为1时,说明这个数的小数部分是大于等于0.5的,所以需要进位,即此时的进位值为1。
  • 对于0的nearest处理:首先舍掉小数位,然后加一个进位值,该进位值恒定为0。
  • 对于负数的nearest处理:首先舍掉小数位,然后加一个进位值:
    • 当小数部分的最高位为0时,说明这个数的小数部分是小于0.5的,而整数部分又是个负数,相当于二者的和的小数部分小于 -0.5。例如10.01是-1.75,它的小数部分.01是0.25,整数部分10是-2,二者相加是-2+0.25 = -1.75,所以它们的处理方式都是先舍弃小数位,然后加0。
    • 当小数部分的最高位为1且其他位不为全0时,说明这个数的小数部分是大于0.5的,而整数部分又是个负数,相当于二者的和的小数部分大于-0.5。例如10.11是-1.25,它的小数部分.11是0.75,整数部分10是-2,二者相加是-2+0.75 = -1.25。所以它们的处理方式都是先舍弃小数位,然后加1。
    • 当小数部分的最高位为1且其他位为全0时,说明这个数的小数部分是等于0.5的,此时向上舍入,例如11_10是 -0.5,nearest后的值为 0(00),即11_10>>11+1>>00。所以它们的处理方式都是先舍弃小数位,然后加1。

上面的内容可以再精简:

  • 当小数部分的最高位为0时,相当于整数部分 + 进位值,进位值等于0,即小数部分的最高位
  • 当小数部分的最高位为1时,相当于整数部分 + 进位值,进位值等于1,即小数部分的最高位

image-20240421161549486

下面以 用nearest的方式来实现Q4.2格式定点数转Q2.0格式定点数为例,Verilog代码如下:

module test(input	[3:0]	data_4Q2,				//有符号数,符号1位,字长4位,小数2位	output	[1:0]	data_2Q0				//有符号数,符号1位,字长2位,小数0位	
);wire	carry;assign	carry = data_4Q2[1];				//小数的最高位就是进位值				
assign	data_2Q0 = data_4Q2[3:2] + carry;	//舍弃低位(即整个小数部分)后再加进位endmodule

因为一共只有16个数,所以我们可以用穷举的方式来测试,TB如下:

`timescale 1ns/1ns
module test_tb();reg	 [3:0]	data_4Q2;			//有符号数,符号1位,整数2位,小数2位	
wire [1:0]	data_2Q0;			//有符号数,符号1位,整数2位,小数0位	integer i;						//循环变量initial begindata_4Q2 = 0;				//输入赋初值	for(i=0;i<16;i=i+1)begin	//遍历所有的输入,共16个	data_4Q2 = i;						#5; $display("data_4Q2:%h		data_2Q0:%h",data_4Q2,data_2Q0);end#20 $stop();				//结束仿真
end//例化被测试模块
test	test_inst(.data_4Q2	(data_4Q2),	.data_2Q0	(data_2Q0)
);endmodule

同时,我们也用matlab来实现同样的功能,观察两者的输出是否一致:

%--------------------------------------------------
% 关闭无关内容
clear;
close all;
clc;%-------------------------------------------------------------------------------
% 生成数据并做Nearest处理
x = -2:0.25:1.75;
F = fimath('RoundingMethod','Nearest');         	% 设定舍入模式为nearest
%F_c = fimath('RoundingMethod','Convergent');      	% 设定舍入模式为nearest
data_4Q2 = fi(x,1,4,2,F);                         	% 生成Q4.2格式的定点数
data_2Q0 = fi(data_4Q2,1,2,0,F);                  	% 从Q4.2格式转换成Q2.0格式

下图是2者分别输出的数据(16进制),可以看到有2个数是对不上的:

image-20240421013707229

你如果记性不错的话,就会发现这两个数正是前面讨论的正数会出现溢出的情况。这2个数分别是0110/0111,即10进制数1.5/1.75,它们的nearest结果应该是2。从上图来看,好像是matlab错了,而RTL对了,但实际情况恰恰相反。现在想想结果是什么格式的?Q2.0!它能表示的最大的数是多少?是10进制的1!所以结果溢出了!

那为什么RTL的结果又 ”对“ 了呢?这纯属是乌龙。因为打印结果是16进制的,并不表示10进制数值,结合结果的2位位宽,可知 ”2“,实际上就是10,它是01的溢出产生的,这个数在Q2.0格式的定点数中并不表示 ”数字2“,而是数字 ”-1“。

matlab是有溢出处理进制的(saturate),它把溢出值把都饱和在了最大值,即01(10进制的1),所以为了防止这种情况的发生,我们也要设计对应的溢出处理机制。因为负数的最小值只取决于整数(小数部分是正的权重),而正数的最大值同时取决于小数和整数,例如Q4.2格式的最小值是-2即10_00,而最大值则是1.75即01_11,所以溢出只会是正向的溢出,那么就只要限定最大值即可。把Verilog代码改一下:

module test(input	[3:0]	data_4Q2,				//有符号数,符号1位,字长4位,小数2位	output	[1:0]	data_2Q0				//有符号数,符号1位,字长2位,小数0位	
);wire			carry;
wire	[2:0]	data_temp;					//扩展1bit,防止溢出assign	carry = data_4Q2[1];	
assign	data_temp = {data_4Q2[3],data_4Q2[3:2]} + {2'b00,carry};		//中间变量,舍弃低位(即整个小数部分)后再加进位    
assign	data_2Q0 = (data_temp[2:1]==2'b01) ? 2'b01 : data_temp[1:0];	//data_2Q0的高2位为01说明产生了正向的进位,即溢出
endmodule

这样结果就是正确的了:

image-20240421014851058

定点数从Q4.2格式转Q2.0格式是一个比较特殊的例子,因为它相当于把小数部分全部舍弃掉了,如果舍入要求不是全部小数位,而是部分小数位,那么处理方式是一样的吗?

是一样的。对于其他情况则相当于把小数点移动到了对应的位置。例如Q5.3格式的定点数转Q3.1格式,则只需要把最后两位小数舍弃并加上进位即可即可,例如:

00.001 是0.125,距离它最近的Q3.1格式的数是0即00.0,即00.001 >> 00.0 + 0 >> 00.0

00.110 是0.75,距离它最近的Q3.1格式的数就是它0.5和1,但是要求向上取整,所以结果是1即01.0,即00.110 >> 00.1+1 >> 01.0

11.111 是-0.125,距离它最近的Q3.1格式的数是0即00.0,即11.111 >> 11.1+ 1 >> 00.0

10.110 是-1.25,距离它最近的Q3.1格式的数是-1和-1.5,但是要求向上取整,所以结果是-1即11.0,即10.110 >> 10.1+1 >> 11.0

其他类似,不赘述了。

这篇关于基于FPGA的数字信号处理(11)--定点数的舍入模式(2)向最临近值取整nearest的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979420

相关文章

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

【iOS】MVC模式

MVC模式 MVC模式MVC模式demo MVC模式 MVC模式全称为model(模型)view(视图)controller(控制器),他分为三个不同的层分别负责不同的职责。 View:该层用于存放视图,该层中我们可以对页面及控件进行布局。Model:模型一般都拥有很好的可复用性,在该层中,我们可以统一管理一些数据。Controlller:该层充当一个CPU的功能,即该应用程序

迭代器模式iterator

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/iterator 不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素

《x86汇编语言:从实模式到保护模式》视频来了

《x86汇编语言:从实模式到保护模式》视频来了 很多朋友留言,说我的专栏《x86汇编语言:从实模式到保护模式》写得很详细,还有的朋友希望我能写得更细,最好是覆盖全书的所有章节。 毕竟我不是作者,只有作者的解读才是最权威的。 当初我学习这本书的时候,只能靠自己摸索,网上搜不到什么好资源。 如果你正在学这本书或者汇编语言,那你有福气了。 本书作者李忠老师,以此书为蓝本,录制了全套视频。 试

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

springboot实战学习(1)(开发模式与环境)

目录 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 (3)前端 二、开发模式 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 Validation:做参数校验Mybatis:做数据库的操作Redis:做缓存Junit:单元测试项目部署:springboot项目部署相关的知识 (3)前端 Vite:Vue项目的脚手架Router:路由Pina:状态管理Eleme

状态模式state

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/state 在一个对象的内部状态变化时改变其行为, 使其看上去就像改变了自身所属的类一样。 在状态模式中,player.getState()获取的是player的当前状态,通常是一个实现了状态接口的对象。 onPlay()是状态模式中定义的一个方法,不同状态下(例如“正在播放”、“暂停