基于FPGA的数字信号处理(11)--定点数的舍入模式(2)向最临近值取整nearest

本文主要是介绍基于FPGA的数字信号处理(11)--定点数的舍入模式(2)向最临近值取整nearest,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在之前的文章介绍了定点数为什么需要舍入和几种常见的舍入模式。今天我们再来看看另外一种舍入模式:向最临近值取整nearest

10进制数的nearest

nearest向最临近值方向取整。它的舍入方式和四舍五入非常类似,都是舍入到最近的整数,比如1.75 nearest到2,-0.25 nearest到0等。二者唯一的区别在于对0.5这类数据的处理上。

  • 0.5的round结果是1,-0.5的round结果是-1
  • 0.5的nearest结果是1,-0.5的nearest结果是0,也就是说对于0.5(1.5/2.5等)这类数据,它们的nearest结果是都是向上取整

以-2到1.75之间的16个数据(步长0.25)为例,它们的nearest结果是这样的:

从上图可以看到:

  • 正数的nearest,分为两个部分:

    • 小数部分小于等于4时就把小数部分(或者约定精度外的部分)丢掉。例如1.25 >> 1,1.0 >> 1 等
    • 小数部分大于等于5时就把小数部分(或者约定精度外的部分)丢掉然后+1。例如1.5 >> 1 >> 1 + 1 >> 2,0.75 >> 0 >> 0+1 >> 1 等
  • 负数的nearest,也分为两个部分:

    • 小数部分小于等于4时就把小数部分(或者约定精度外的部分)丢掉。例如-1.25 >> -1,-1.0 >> -1 等
    • 小数部分大于等于5时就把小数部分(或者约定精度外的部分)丢掉然后-1。例如 -1.5 >> -1 >> -1 - 1 >> -2,-0.75 >> 0 >> 0-1 >> -1 等
  • 0的nearest,就是直接丢掉小数部分

2进制数的nearest

2进制数的nearest和10进制的nearest类似。以Q4.2格式的定点数(字长4位,小数2位的有符号数)为例,对于负数的小数部分的处理:

  • -2(d) = 10_00(b) nearest后的值为 -2,等价于 10,即舍弃小数部分后的值(10)
  • -1.75(d) = 10_01(b) nearest后的值为 -2,等价于 10,即舍弃小数部分后的值(10)
  • -1.5(d) = 10_10(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(10)再加1
  • -1.25(d) = 10_11(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(10)再加1
  • -1(d) = 11_00(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(11)
  • -0.75(d) = 11_01(b) nearest后的值为 -1,等价于 11,即舍弃小数部分后的值(11)
  • -0.5(d) = 11_10(b) nearest后的值为 0,等价于 00,即舍弃小数部分后的值(11)再加1
  • -0.25(d) = 11_11(b) nearest后的值为 0,等价于 00,即舍弃小数部分后的值(11)再加1

对于正数的小数部分的处理:

  • 1.75(d) = 01_11(b) nearest后的值为 2,此时溢出了,需要扩展位宽,处理方式也是舍弃小数部分的值(001)再加1即010
  • 1.5(d) = 01_10(b) nearest后的值为 2,此时溢出了,需要扩展位宽,处理方式也是舍弃小数部分的值(001)再加1即010
  • 1.25(d) = 01_01(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(01)的值
  • 1(d) = 01_00(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(01)的值
  • 0.75(d) = 00_11(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(00)的值再加1
  • 0.5(d) = 00_10(b) nearest后的值为 1,等价于 01,即舍弃小数部分后(00)的值再加1
  • 0.25(d) = 00_01(b) nearest后的值为 0,等价于 00,即舍弃小数部分后(00)的值

对于0的处理:直接舍弃小数部分。

总结一下,就是:

  • 对于正数的nearest处理:首先舍掉小数位,然后加一个进位值:
    • 当小数部分的最高位为0时,说明这个数的小数部分是小于0.5的,所以不需要进位,此时的进位值为0。
    • 当小数部分的最高位为1时,说明这个数的小数部分是大于等于0.5的,所以需要进位,即此时的进位值为1。
  • 对于0的nearest处理:首先舍掉小数位,然后加一个进位值,该进位值恒定为0。
  • 对于负数的nearest处理:首先舍掉小数位,然后加一个进位值:
    • 当小数部分的最高位为0时,说明这个数的小数部分是小于0.5的,而整数部分又是个负数,相当于二者的和的小数部分小于 -0.5。例如10.01是-1.75,它的小数部分.01是0.25,整数部分10是-2,二者相加是-2+0.25 = -1.75,所以它们的处理方式都是先舍弃小数位,然后加0。
    • 当小数部分的最高位为1且其他位不为全0时,说明这个数的小数部分是大于0.5的,而整数部分又是个负数,相当于二者的和的小数部分大于-0.5。例如10.11是-1.25,它的小数部分.11是0.75,整数部分10是-2,二者相加是-2+0.75 = -1.25。所以它们的处理方式都是先舍弃小数位,然后加1。
    • 当小数部分的最高位为1且其他位为全0时,说明这个数的小数部分是等于0.5的,此时向上舍入,例如11_10是 -0.5,nearest后的值为 0(00),即11_10>>11+1>>00。所以它们的处理方式都是先舍弃小数位,然后加1。

上面的内容可以再精简:

  • 当小数部分的最高位为0时,相当于整数部分 + 进位值,进位值等于0,即小数部分的最高位
  • 当小数部分的最高位为1时,相当于整数部分 + 进位值,进位值等于1,即小数部分的最高位

image-20240421161549486

下面以 用nearest的方式来实现Q4.2格式定点数转Q2.0格式定点数为例,Verilog代码如下:

module test(input	[3:0]	data_4Q2,				//有符号数,符号1位,字长4位,小数2位	output	[1:0]	data_2Q0				//有符号数,符号1位,字长2位,小数0位	
);wire	carry;assign	carry = data_4Q2[1];				//小数的最高位就是进位值				
assign	data_2Q0 = data_4Q2[3:2] + carry;	//舍弃低位(即整个小数部分)后再加进位endmodule

因为一共只有16个数,所以我们可以用穷举的方式来测试,TB如下:

`timescale 1ns/1ns
module test_tb();reg	 [3:0]	data_4Q2;			//有符号数,符号1位,整数2位,小数2位	
wire [1:0]	data_2Q0;			//有符号数,符号1位,整数2位,小数0位	integer i;						//循环变量initial begindata_4Q2 = 0;				//输入赋初值	for(i=0;i<16;i=i+1)begin	//遍历所有的输入,共16个	data_4Q2 = i;						#5; $display("data_4Q2:%h		data_2Q0:%h",data_4Q2,data_2Q0);end#20 $stop();				//结束仿真
end//例化被测试模块
test	test_inst(.data_4Q2	(data_4Q2),	.data_2Q0	(data_2Q0)
);endmodule

同时,我们也用matlab来实现同样的功能,观察两者的输出是否一致:

%--------------------------------------------------
% 关闭无关内容
clear;
close all;
clc;%-------------------------------------------------------------------------------
% 生成数据并做Nearest处理
x = -2:0.25:1.75;
F = fimath('RoundingMethod','Nearest');         	% 设定舍入模式为nearest
%F_c = fimath('RoundingMethod','Convergent');      	% 设定舍入模式为nearest
data_4Q2 = fi(x,1,4,2,F);                         	% 生成Q4.2格式的定点数
data_2Q0 = fi(data_4Q2,1,2,0,F);                  	% 从Q4.2格式转换成Q2.0格式

下图是2者分别输出的数据(16进制),可以看到有2个数是对不上的:

image-20240421013707229

你如果记性不错的话,就会发现这两个数正是前面讨论的正数会出现溢出的情况。这2个数分别是0110/0111,即10进制数1.5/1.75,它们的nearest结果应该是2。从上图来看,好像是matlab错了,而RTL对了,但实际情况恰恰相反。现在想想结果是什么格式的?Q2.0!它能表示的最大的数是多少?是10进制的1!所以结果溢出了!

那为什么RTL的结果又 ”对“ 了呢?这纯属是乌龙。因为打印结果是16进制的,并不表示10进制数值,结合结果的2位位宽,可知 ”2“,实际上就是10,它是01的溢出产生的,这个数在Q2.0格式的定点数中并不表示 ”数字2“,而是数字 ”-1“。

matlab是有溢出处理进制的(saturate),它把溢出值把都饱和在了最大值,即01(10进制的1),所以为了防止这种情况的发生,我们也要设计对应的溢出处理机制。因为负数的最小值只取决于整数(小数部分是正的权重),而正数的最大值同时取决于小数和整数,例如Q4.2格式的最小值是-2即10_00,而最大值则是1.75即01_11,所以溢出只会是正向的溢出,那么就只要限定最大值即可。把Verilog代码改一下:

module test(input	[3:0]	data_4Q2,				//有符号数,符号1位,字长4位,小数2位	output	[1:0]	data_2Q0				//有符号数,符号1位,字长2位,小数0位	
);wire			carry;
wire	[2:0]	data_temp;					//扩展1bit,防止溢出assign	carry = data_4Q2[1];	
assign	data_temp = {data_4Q2[3],data_4Q2[3:2]} + {2'b00,carry};		//中间变量,舍弃低位(即整个小数部分)后再加进位    
assign	data_2Q0 = (data_temp[2:1]==2'b01) ? 2'b01 : data_temp[1:0];	//data_2Q0的高2位为01说明产生了正向的进位,即溢出
endmodule

这样结果就是正确的了:

image-20240421014851058

定点数从Q4.2格式转Q2.0格式是一个比较特殊的例子,因为它相当于把小数部分全部舍弃掉了,如果舍入要求不是全部小数位,而是部分小数位,那么处理方式是一样的吗?

是一样的。对于其他情况则相当于把小数点移动到了对应的位置。例如Q5.3格式的定点数转Q3.1格式,则只需要把最后两位小数舍弃并加上进位即可即可,例如:

00.001 是0.125,距离它最近的Q3.1格式的数是0即00.0,即00.001 >> 00.0 + 0 >> 00.0

00.110 是0.75,距离它最近的Q3.1格式的数就是它0.5和1,但是要求向上取整,所以结果是1即01.0,即00.110 >> 00.1+1 >> 01.0

11.111 是-0.125,距离它最近的Q3.1格式的数是0即00.0,即11.111 >> 11.1+ 1 >> 00.0

10.110 是-1.25,距离它最近的Q3.1格式的数是-1和-1.5,但是要求向上取整,所以结果是-1即11.0,即10.110 >> 10.1+1 >> 11.0

其他类似,不赘述了。

这篇关于基于FPGA的数字信号处理(11)--定点数的舍入模式(2)向最临近值取整nearest的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979420

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

python中的整除向下取整的操作方法

《python中的整除向下取整的操作方法》Python中的//是整数除法运算符,用于执行向下取整的除法,返回商的整数部分,不会四舍五入,它在分治法、索引计算和整数运算中非常有用,本文给大家介绍pyth... 目录1. // 的基本用法2. // vs /(普通除法)3. // 在 mid = len(lis

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例