(泰勒展开式/欧拉公式)证明:e^x推导及e^(iπ) = -1展开过程

2024-05-07 22:48

本文主要是介绍(泰勒展开式/欧拉公式)证明:e^x推导及e^(iπ) = -1展开过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欧拉公式意义:
欧拉公式是在复分析领域的公式,将三角函数与复数指数函数相关联,因其提出者莱昂哈德·欧拉而得名.1.将指数函数ex展开成幂级数形式。
首先,假设有恒等式:
e^x= a0 + a1x + a2x^2 + a3x^3 + a4x^4 + …+ anx^n(n趋向无穷大)两侧取导数:
e^x = 0 + a1 + 2a2x + 3a3x^2 + 4a4x^3 + …+ nanx^(n-1)因而有恒等式
a0 + a1x + a2x^2 + a3x^3 + a4x^4 + …+ anx^n = a1 + 2a2x + 3a3x^2 + 4a4x^3 + …+ nanx^(n-1)两一元多项式恒等,次数相同的项,系数应相同,则有a0 = a1
a1 = 2a2
a2 = 3a3
a3 = 4a4
……an-1 = nan由此得
a1 = a0
a2= a1/2 = a0/2! //2! = 2 * 1
a3= a2/3 = a1/(2*3) = a0/3! //3! = 3 * 2 * 1
a4= a3/4 = a2/(3*4) = a1/(2*3*4) = a0/4! //4! = 4 * 3 * 2 * 1
……an = a0/n!代回最初的假设式ex = a0 + a1x + a2x^2 + a3x^3 + a4x^4 + …+ anx^n,有e^x = 1*a0 + a0x/1! + a0x^2/2! + a0x^3/3! + a0x^4/4! + …+ a0x^n/n!
e^x = a0( 1+x/1! + x^2/2! + x^3/3! +x^4/4! + …+ x^n/n!)此是恒等式。因当x=0时,式子也成立。将x=0代入,有e0 = a0*(1 + 0/1! +0^2/2! + 0^3/3! +0^4/4! + …+ 0^n/n!)
1 = a0*(1 + 0)
a0 = 1(恒成立)将a0 = 1代入 ex =a0*(1 + x/1! + x^2/2! + x^3/3! + x^4/4! + …+ x^n/n!),得到e^x = 1 + x + x^2/2! + x^3/3! + …+ x^n/n!(n趋向无穷大)由此推导e^(ix) = cos(x) + i* sin(x)过程
<1>.欧拉公式里其他两个函数的泰勒级数为:
cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! +...
sin(x) = x - x^3/3! + x^5/5! - x^7/7! +...<2>.现在,让我们将泰勒级数中的变量x换成ix,得到
e^x = 1 + x + x^2/2! + x^3/3! + …+ x^n/n!(n趋向无穷大)
e^(ix) = 1 + ix + (ix)^2/2! + (ix)^3/3! + ...+ (ix)^n/n!<3>.其中某些i的次方可以简化,例如,由定义i^2=−1,所以i^3=-i及i^4=1,等等。因此,上式可简化为
e^(ix) = 1 + ix -x^2/2! - i*x^3/3! + x^4/4! + i*x^5/5! - x^6/6! - i*x^7/7! + x^8/8! + ...<4>.我们可以将涉及i的项合并在一起,给出
e^(ix) = (1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! +...) + i*(x - x^3/3! + x^5/5! -  x^7/7! + ...)<5>.注意到这两个级数与上面的sin(x)和cos(x)的对应级数一样,所以我们将它们代入而得到e^(ix) = cos(x) + i*sin(x) //这就是欧拉公式<6>.我们现在要做的是让x = π。由于sin(π) = 0及cos(π) = −1,我们得到
e^(iπ) = cos(π) + i*sin(π)= cos(180) + i*sin(180)= -1 + i*0= -1将各项写成统一形式:
ex= x^0/0! + x^1/1! +x^2/2! + x^3/3! + …+ x^n/n!(n趋向无穷大)所以
e^x = ∑n=0∞ xn/n!(即 1 + x + x^2/2! + x^3/3! + x^4/4! +…)特别地,当x=1时,有
e=∑n=0∞ 1/n!(即 2 + 1/2! + 1/3! + 1/4! +…)

 

这篇关于(泰勒展开式/欧拉公式)证明:e^x推导及e^(iπ) = -1展开过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968614

相关文章

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

Nginx添加内置模块过程

《Nginx添加内置模块过程》文章指导如何检查并添加Nginx的with-http_gzip_static模块:确认该模块未默认安装后,需下载同版本源码重新编译,备份替换原有二进制文件,最后重启服务验... 目录1、查看Nginx已编辑的模块2、Nginx官网查看内置模块3、停止Nginx服务4、Nginx

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知