文献速递:深度学习医学影像心脏疾病检测与诊断--CT中的深度学习用于自动钙评分:使用多个心脏CT和胸部CT协议的验证

本文主要是介绍文献速递:深度学习医学影像心脏疾病检测与诊断--CT中的深度学习用于自动钙评分:使用多个心脏CT和胸部CT协议的验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Title 

题目

Deep Learning for Automatic Calcium Scoring in CT:

Validation Using Multiple Cardiac CT and Chest CT Protocols

CT中的深度学习用于自动钙评分:使用多个心脏CT和胸部CT协议的验证

Background

背景

Although several deep learning (DL) calcium scoring methods have achieved excellent performance for specific CT pro tocols, their performance in a range of CT examination types is unknown.

尽管几种深度学习(DL)钙评分方法已经在特定的CT协议中取得了出色的性能,但它们在一系列CT检查类型中的表现尚不清楚。

Method

方法

The study included 7240 participants who underwent various types of nonenhanced CT examinations that in cluded the heart: coronary artery calcium (CAC) scoring CT, diagnostic CT of the chest, PET attenuation correction CT, radiation  therapy treatment planning CT, CAC screening CT, and low-dose CT of the chest. CAC and thoracic aorta calcification (TAC)  were quantified using a convolutional neural network trained with (a) 1181 low-dose chest CT examinations (baseline), (b) a small  set of examinations of the respective type supplemented to the baseline (data specific), and (c) a combination of examinations of all  available types (combined). Supplemental training sets contained 199–568 CT images depending on the calcium burden of each  population. The DL algorithm performance was evaluated with intraclass correlation coefficients (ICCs) between DL and manual  (Agatston) CAC and (volume) TAC scoring and with linearly weighted k values for cardiovascular risk categories (Agatston score;  cardiovascular disease risk categories: 0, 1–10, 11–100, 101–400, .400).

该研究包括了7240名参与者,接受了各种类型的非增强CT检查,包括心脏:冠状动脉钙化(CAC)评分CT、胸部诊断CT、PET衰减校正CT、放射治疗计划CT、CAC筛查CT和胸部低剂量CT。使用一个经过训练的卷积神经网络对CAC和胸主动脉钙化(TAC)进行了量化,训练集包括:(a) 1181例低剂量胸部CT检查(基线),(b) 在基线上增补了各自类型的少量检查(数据特定),以及(c) 组合了所有可用类型的检查(综合)。增补训练集根据每个人群的钙负荷而含有199-568张CT图像。DL算法的性能评估采用DL与手动(Agatston)CAC和(体积)TAC评分之间的ICC以及心血管风险类别(Agatston评分;心血管疾病风险类别:0、1-10、11-100、101-400、>400)的线性加权k值

Results

结果

At baseline, the DL algorithm yielded ICCs of 0.79–0.97 for CAC and 0.66–0.98 for TAC across the range of different  types of CT examinations. ICCs improved to 0.84–0.99 (CAC) and 0.92–0.99 (TAC) for CT protocol–specific training and to  0.85–0.99 (CAC) and 0.96–0.99 (TAC) for combined training. For assignment of cardiovascular disease risk category, the k value  for all test CT scans was 0.90 (95% confidence interval [CI]: 0.89, 0.91) for the baseline training. It increased to 0.92 (95% CI: 0.91, 0.93) for both data-specific and combined training.

在基线情况下,深度学习算法在各种不同类型的CT检查中,钙化量化的ICC为0.79-0.97(CAC)和0.66-0.98(TAC)。对于CT协议特定的训练,ICC提高到0.84-0.99(CAC)和0.92-0.99(TAC),而对于综合训练,ICC则提高到0.85-0.99(CAC)和0.96-0.99(TAC)。对于心血管疾病风险分类的分配,在基线训练中,所有测试CT扫描的k值为0.90(95%置信区间[CI]:0.89,0.91)。对于数据特定和综合训练,k值增加到0.92(95% CI:0.91,0.93)。

Conclusion

结论

A deep learning calcium scoring algorithm for quantification of coronary and thoracic calcium was robust, despite sub stantial differences in CT protocol and variations in subject population. Augmenting the algorithm training with CT protocol–spe cific images further improved algorithm performance.

一个深度学习的钙评分算法,用于量化冠状动脉和胸部钙化,在CT协议和受试者人群方面存在显著差异的情况下表现稳健。通过使用特定于CT协议的图像增强算法训练,进一步提高了算法的性能。

Figure

图片

Figure 1: CT images are examples of lung screening CT from the National Lung Screening Trial (NLST), coronary artery calcium scoring CT  (CAC-CT), PET attenuation correction (ACPET) CT, diagnostic CT of the chest, radiation therapy treatment planning (RadTherapy) CT, and CT exami nations from the Jackson Heart Study (JHS). Indication of coronary artery calcium in the left anterior descending artery (black arrow), left circumflex  artery (white arrowhead), right coronary artery (black arrowhead), and aorta (white arrows).

图1:CT图像示例来自国家肺部筛查试验(NLST),包括肺部筛查CT、冠状动脉钙化评分CT(CAC-CT)、PET衰减校正(ACPET)CT、胸部诊断CT、放射治疗计划(RadTherapy)CT以及来自杰克逊心脏研究(JHS)的CT检查。冠状动脉钙化的指示位于左前降支动脉(黑色箭头)、左回旋支动脉(白色箭头)、右冠状动脉(黑色箭头)和主动脉(白色箭头)处。

图片

Figure 2: Images show architecture of the deep learning calcium scoring algorithm. Algorithm consists of two convolutional neural networks  (CNNs). The first CNN has a large field of view and detects candidate calcifications (voxels) on the image and labels them according to their ana tomic location. The second CNN has a smaller field of view and detects true calcified voxels among candidates detected by the first CNN. LAD =  left anterior descending artery, LCX = left circumflex artery, RCA = right coronary artery, TAC = thoracic aorta calcification.

图2:图像展示了深度学习钙评分算法的架构。该算法由两个卷积神经网络(CNNs)组成。第一个CNN具有较大的视野,并在图像上检测候选的钙化(体素),并根据其解剖位置对其进行标记。第二个CNN具有较小的视野,并在第一个CNN检测到的候选钙化中检测真实的钙化体素。LAD = 左前降支动脉,LCX = 左回旋支动脉,RCA = 右冠状动脉,TAC = 胸主动脉钙化。

图片

Figure 3: Illustration depicts training and evaluation of baseline, data-specific, and combined algorithms. Baseline algorithm was trained with  National Lung Screening Trial (NLST) scans, and its performance was evaluated in each CT protocol type. Five data-specific algorithms were  trained, one specifically for each CT protocol type, and evaluated in respective CT type. Combined algorithm was trained with a combination of all  available CT protocol types (excluding diagnostic chest CT), and its performance was evaluated in all available CT protocol types. CT types used  for training were NLST CT examinations, coronary artery calcium scoring CT (CAC-CT), PET attenuation correction (ACPET) CT, diagnostic chest CT,  radiation therapy treatment planning (RTP) CT, and CT examinations from the Jackson Heart Study (JHS).

图3:示意图描述了基线、数据特定和综合算法的训练和评估过程。基线算法是使用国家肺部筛查试验(NLST)扫描进行训练的,并在每种CT协议类型中进行了性能评估。针对每种CT协议类型分别训练了五种数据特定算法,并在相应的CT类型中进行了评估。综合算法是使用所有可用的CT协议类型(不包括诊断胸部CT)进行训练的,并在所有可用的CT协议类型中进行了性能评估。用于训练的CT类型包括NLST CT检查、冠状动脉钙化评分CT(CAC-CT)、PET衰减校正(ACPET)CT、胸部诊断CT、放射治疗计划(RTP)CT以及来自杰克逊心脏研究(JHS)的CT检查。

图片

Figure 4: Bland-Altman plots of coronary artery calcium (CAC) Agatston scores with 95% limits of agreement (dashed lines) comparing manual scoring with automatic  scoring in CAC CT, PET attenuation correction (ACPET) CT, diagnostic chest, radiation therapy treatment planning (RadTherapy), and CAC research CT from the Jackson  Heart Study (JHS). Outliers are indicated by an arrow, with difference given, and 95% limits of agreement are represented by the formula: difference = 61.96 ·  (p/2)0.5 · (b + a · Mean0.5). For the baseline algorithm coefficients, a and b were 4.6 and 27.1, respectively, for CAC CT; 18.2 and 2178.0, respectively, for ACPET CT;  10.6 and 246.5, respectively, for diagnostic chest CT; 7.2 and 23.2, respectively, for RadTherapy; and 10.6 and 224.3, respectively, for JHS CT examinations. For the combined algorithm, coefficients a and b were 1.8 and 21.9, respectively, for CAC CT; 7.9 and 276.2, respectively, for ACPET CT; 3.4 and 2.7, respectively, for diagnos tic chest CT; 4.8 and 22.4, respectively, for RadTherapy; and 6.6 and 10.8, respectively, for JHS examinations.

图4:Bland-Altman图显示了冠状动脉钙化(CAC)Agatston评分,95%的一致性限(虚线),比较手动评分与CAC CT、PET衰减校正(ACPET)CT、诊断胸部、放射治疗计划(RadTherapy)以及来自杰克逊心脏研究(JHS)的CAC研究CT中的自动评分。异常值由箭头表示,给出了差异,并且95%的一致性限由以下公式表示:差异=61.96·(p/2)0.5·(b+a·Mean0.5)。对于基线算法系数,CAC CT分别为4.6和27.1;ACPET CT分别为18.2和2178.0;诊断胸部CT分别为10.6和246.5;RadTherapy分别为7.2和23.2;JHS CT检查分别为10.6和224.3。对于组合算法,系数a和b分别为1.8和21.9,对于CAC CT;7.9和276.2,对于ACPET CT;3.4和2.7,对于诊断胸部CT;4.8和22.4,对于RadTherapy;6.6和10.8,对于JHS检查。

图片

Figure 5: Bland-Altman plots of thoracic aorta calcification volumes (in cubic millimeters) with 95% limits of agreement (dashed lines) comparing manual  scoring with automatic scoring in coronary artery calcium (CAC) CT, PET attenuation correction CT (ACPET), clinical chest CT, and radiation therapy treatment  planning (RadTherapy) CT. Outliers are indicated by an arrow, with difference given, and 95% limits of agreement are represented by the formula: difference  = 61.96 · (p/2)0.5 · (b + a · Mean0.5). For the baseline algorithm, coefficients a and b were 21.9 and 238.3, respectively, for CAC CT; 40.4 and 2859.2,  respectively, for ACPET CT, 11.9 and 218.0, respectively, for diagnostic chest CT; and 8.1 and 17.5, respectively, for RadTherapy examinations. For the  combined algorithm, coefficients a and b were 11.5 and 220.5, respectively, for CAC CT; 17.2 and 2226.1, respectively, for ACPET CT; 11.4 and 23.9,  respectively, for diagnostic chest CT; and 6.7 and 227.1, respectively, for RadTherapy examinations.

图5:Bland-Altman图显示了胸主动脉钙化体积(以立方毫米为单位),95%的一致性限(虚线),比较手动评分与冠状动脉钙化(CAC)CT、PET衰减校正CT(ACPET)、临床胸部CT和放射治疗计划(RadTherapy)CT中的自动评分。异常值由箭头表示,给出了差异,并且95%的一致性限由以下公式表示:差异=61.96·(p/2)0.5·(b+a·Mean0.5)。对于基线算法,系数a和b分别为21.9和238.3,对于CAC CT;分别为40.4和2859.2,对于ACPET CT;分别为11.9和218.0,对于诊断胸部CT;分别为8.1和17.5,对于RadTherapy检查。对于组合算法,系数a和b分别为11.5和220.5,对于CAC CT;分别为17.2和2226.1,对于ACPET CT;分别为11.4和23.9,对于诊断胸部CT;分别为6.7和227.1,对于RadTherapy检查。

图片

Figure 6: Graphs show Agatston scores calculated automatically with the combined algorithm plotted against manually calculated Agatston  scores for scoring in coronary artery calcium (CAC) CT, PET attenuation correction (ACPET) CT, diagnostic CT of chest, radiation therapy treatment  planning (RadTherapy), and CAC research CT from the Jackson Heart Study (JHS). Difference between risk categories (RCs) assigned by manual  and automatic calcium scoring is indicated by colored blocks. Cardiovascular disease risk categories are as follows: 0, 1–10, 11–100, 101–400, .400. For JHS examinations, random selection of 500 examinations is shown for visualization purposes. Note that scale is log scale.

图6:图表显示了使用组合算法自动计算的Agatston分数与手动计算的Agatston分数之间的关系,用于冠状动脉钙化(CAC)CT、PET衰减校正(ACPET)CT、胸部诊断CT、放射治疗计划(RadTherapy)CT以及来自杰克逊心脏研究(JHS)的CAC研究CT的评分。手动和自动钙评分分配的风险分类之间的差异由彩色块表示。心血管疾病风险分类如下:0、1–10、11–100、101–400、>400。对于JHS检查,随机选择了500个检查进行可视化。请注意,刻度为对数刻度。

Table

图片

Table 1: Characteristics of Data Sets

表1:数据集特征

图片

Table 2: Volume-wise Performance Evaluation of Baseline, Data-Specific, and Combined Training Networks

表2:基线、数据特定和综合训练网络的体积性能评估

图片

TABLE 2 (continued): Volume-wise Performance Evaluation of Baseline, Data-Specific, and Combined Training Networks

表2(续):基线、数据特定和综合训练网络的体积性能评估

图片

Table 3: Reliability of Continuous Agatston Scores and Risk Category Assignment

表3:连续Agatston分数和风险分类分配的可靠性

图片

Table 4: Detection of Zero-Score CAC Scans

表4:零分CAC扫描的检测

这篇关于文献速递:深度学习医学影像心脏疾病检测与诊断--CT中的深度学习用于自动钙评分:使用多个心脏CT和胸部CT协议的验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/968196

相关文章

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器