基于DTW距离测度的Kmeans时间序列聚类算法

2024-05-07 14:20

本文主要是介绍基于DTW距离测度的Kmeans时间序列聚类算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理介绍

基于DTW距离测度的Kmeans时间序列聚类算法代码获取戳这里代码获取戳这里代码获取戳这里代码获取戳这里代码获取戳这里
  1. DTW距离
  • 当两个时间序列不等长时,传统的欧氏距离难以度量它们的相似性。DTW通过调节时间点之间的对应关系,能够寻找两个任意长时间序列中数据之间的最佳匹配路径。
  • DTW算法的基本思想是通过将时间序列进行弯曲、拉伸等变换,找到它们之间的最佳匹配路径,从而得到它们之间的相似度。在DTW算法中,距离越小表示两个时间序列越相似。
  • DTW对噪声有很强的鲁棒性,适用于语音识别、手写体识别、生物信息学、金融时间序列分析等领域。
  1. K-means聚类算法
  • K-means算法基于迭代优化,旨在将数据点划分为k个簇,使得每个数据点都属于最近的簇,并且簇的中心是所有数据点的平均值。
  • K-means算法的初始化阶段随机选择k个数据点作为初始簇中心,然后通过迭代将数据点分配给最近的簇中心,并更新簇中心点,直到达到收敛条件或预定的迭代次数。
  1. 结合DTW和K-means
  • 在时间序列聚类中,传统的K-means算法使用欧氏距离作为相似度度量,但这对不等长的时间序列不适用。因此,基于DTW距离的K-means算法使用DTW距离取代欧氏距离,使得算法能够处理不等长的时间序列。
  • 该算法首先计算所有时间序列对之间的DTW距离,然后使用这些距离作为输入来执行K-means聚类。

基于DTW(动态时间规整)距离的K-means时间序列聚类算法与传统的K-means算法相比,主要在以下几个方面有所不同:

  1. 距离度量

    • 传统K-means算法使用欧氏距离作为相似度或距离度量,它适用于等长数据的聚类。然而,在处理时间序列数据时,尤其是长度不等的时间序列,欧氏距离可能不再适用。
    • 基于DTW距离的K-means算法使用DTW距离作为度量,DTW是一种能够处理不等长序列的相似度度量方法。它通过动态规划找到两个时间序列之间的最佳对齐方式,并计算对齐后的序列之间的距离。这使得算法能够处理不等长的时间序列数据。
  2. 聚类结果

    • 传统K-means算法通过迭代将数据点分配给最近的簇中心,并更新簇中心,直到达到收敛条件或预定的迭代次数。由于使用欧氏距离,它通常适用于空间中的聚类问题。
    • 基于DTW距离的K-means算法则通过计算时间序列之间的DTW距离,将数据序列分配到最近的簇中,并更新簇中心为簇内序列的某种代表(可能是平均值或最接近平均值的实际序列)。这使得算法能够发现时间序列数据中的模式和结构。
  3. 适用场景

    • 传统K-means算法适用于空间数据的聚类,如二维或三维空间中的点数据。它在图像处理、机器学习等领域有广泛应用。
    • 基于DTW距离的K-means算法特别适用于时间序列数据的聚类。它可以用于分析具有时间顺序的数据,如股票价格、气象数据、生物信号等。在这些领域中,时间序列数据往往具有不等长的特性,因此基于DTW距离的K-means算法更具优势。
  4. 算法复杂度

    • 传统K-means算法的时间复杂度通常为O(nkt),其中n是数据点的数量,k是簇的数量,t是迭代次数。
    • 基于DTW距离的K-means算法的时间复杂度可能会更高,因为计算DTW距离本身就是一个相对耗时的过程。然而,对于处理时间序列数据来说,这种复杂度是可以接受的,并且算法通常能够在合理的时间内完成聚类任务。

综上所述,基于DTW距离的K-means时间序列聚类算法在距离度量、聚类结果、适用场景和算法复杂度等方面与传统K-means算法有所不同。它特别适用于处理不等长的时间序列数据,并能够在这些数据中发现有用的模式和结构。

部分代码:

clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
%% ============================导入数据=============================
data = xlsread('序列数据.xlsx');
X = data;                        % 特征序列
%% ============================kmeans聚类===========================
K = 3;  
[idx,C] = mykmeans(X,K,[],[],[],'Dtw','sample');   % 'plus'\'sample'
%% =============================聚类结果可视化=======================
Cor = linspecer(K);
figure()
name = [];

这篇关于基于DTW距离测度的Kmeans时间序列聚类算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967600

相关文章

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增