【电机控制】七段式SVPWM扇区、矢量作用时间计算——对比simplefoc与Ti例程

本文主要是介绍【电机控制】七段式SVPWM扇区、矢量作用时间计算——对比simplefoc与Ti例程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【电机控制】七段式SVPWM扇区、矢量作用时间计算——对比simplefoc与Ti例程


文章目录

  • 前言
  • 一、simplefoc——通过角度找扇区
    • 1.通过角度找扇区理论
      • 1.通过角度找扇区
      • 2.矢量作用时间计算
      • 3.矢量切换时间计算——七段式
    • 2.simplefoc代码
    • 3.解读simplefoc代码
      • 1.通过角度找扇区
      • 2.矢量作用时间计算
  • 二、TI——通过Uα、Uβ找扇区
    • 1.通过Uα、Uβ找扇区理论
    • 2.TI代码
    • 3.解读TI代码
      • 1.ABC赋值
      • 2.找扇区
      • 3.矢量作用时间计算
      • 4.矢量切换时间计算——七段式
  • 三、参考文章
  • 总结


前言

【电机控制】直流有刷电机、无刷电机汇总——持续更新
使用工具:
1.得力万用表


提示:以下是本篇文章正文内容,下面案例可供参考

一、simplefoc——通过角度找扇区

1.通过角度找扇区理论

1.通过角度找扇区

在这里插入图片描述

2.矢量作用时间计算

在这里插入图片描述
在这里插入图片描述
Udc表示电源电压(在代码中是voltage_limit),Uref表示设置的力矩大小(在代码中是target_voltage),Ts表示PWM周期(代码中没有把Ts体现出来,代码中的T1、T2是周期的百分比)。

3.矢量切换时间计算——七段式

与下列TI计算的七段式相同,不同的是TI做了优化处理

在这里插入图片描述

2.simplefoc代码

	sector = (angle_el / _PI_3) + 1;T1 = _SQRT3*_sin(sector*_PI_3 - angle_el) * Uout;T2 = _SQRT3*_sin(angle_el - (sector-1.0)*_PI_3) * Uout;T0 = 1 - T1 - T2;// calculate the duty cycles(times)switch(sector){case 1:Ta = T1 + T2 + T0/2;Tb = T2 + T0/2;Tc = T0/2;break;case 2:Ta = T1 +  T0/2;Tb = T1 + T2 + T0/2;Tc = T0/2;break;case 3:Ta = T0/2;Tb = T1 + T2 + T0/2;Tc = T2 + T0/2;break;case 4:Ta = T0/2;Tb = T1+ T0/2;Tc = T1 + T2 + T0/2;break;case 5:Ta = T2 + T0/2;Tb = T0/2;Tc = T1 + T2 + T0/2;break;case 6:Ta = T1 + T2 + T0/2;Tb = T0/2;Tc = T1 + T0/2;break;default:  // possible error stateTa = 0;Tb = 0;Tc = 0;}TIM_SetCompare1(TIM2,Ta*PWM_Period);TIM_SetCompare2(TIM2,Tb*PWM_Period);TIM_SetCompare3(TIM2,Tc*PWM_Period);

3.解读simplefoc代码

1.通过角度找扇区

	sector = (angle_el / _PI_3) + 1;

2.矢量作用时间计算

	T1 = _SQRT3*_sin(sector*_PI_3 - angle_el) * Uout;T2 = _SQRT3*_sin(angle_el - (sector-1.0)*_PI_3) * Uout;T0 = 1 - T1 - T2;switch(sector){case 1:Ta = T1 + T2 + T0/2;Tb = T2 + T0/2;Tc = T0/2;break;case 2:Ta = T1 +  T0/2;Tb = T1 + T2 + T0/2;Tc = T0/2;break;case 3:Ta = T0/2;Tb = T1 + T2 + T0/2;Tc = T2 + T0/2;break;case 4:Ta = T0/2;Tb = T1+ T0/2;Tc = T1 + T2 + T0/2;break;case 5:Ta = T2 + T0/2;Tb = T0/2;Tc = T1 + T2 + T0/2;break;case 6:Ta = T1 + T2 + T0/2;Tb = T0/2;Tc = T1 + T0/2;break;default:  // possible error stateTa = 0;Tb = 0;Tc = 0;}

二、TI——通过Uα、Uβ找扇区

1.通过Uα、Uβ找扇区理论

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

若A、B、C、任意一个不等式大于0,则为1,反之则为0
在这里插入图片描述

2.TI代码

void  SVPWM_Gen(SVGEN *v)
{v->tmp1= v->Ubeta;															v->tmp2= _IQdiv2(v->Ubeta) + _IQmpy(_IQ(0.866),v->Ualpha);					v->tmp3= v->tmp2 - v->tmp1;													v->VecSector=3;															v->VecSector=(v->tmp2> 0)?( v->VecSector-1):v->VecSector;					v->VecSector=(v->tmp3> 0)?( v->VecSector-1):v->VecSector;						v->VecSector=(v->tmp1< 0)?(7-v->VecSector) :v->VecSector;						if(v->VecSector==1 || v->VecSector==4)                                 {   v->Ta= v->tmp2; 													v->Tb= v->tmp1-v->tmp3; 											v->Tc=-v->tmp2;														}								    										   																				else if(v->VecSector==2 || v->VecSector==5)                                   {   v->Ta= v->tmp3+v->tmp2; 												v->Tb= v->tmp1; 														v->Tc=-v->tmp1;														}																	   																					else  if(v->VecSector==3 || v->VecSector==6)   {   v->Ta= v->tmp3; 														v->Tb=-v->tmp3; 														v->Tc=-(v->tmp1+v->tmp2);												}							else{v->Ta=0;v->Tb=0;v->Tc=0;}
}	

3.解读TI代码

1.ABC赋值

	v->tmp1= v->Ubeta;															v->tmp2= _IQdiv2(v->Ubeta) + _IQmpy(_IQ(0.866),v->Ualpha);					v->tmp3= v->tmp2 - v->tmp1;			

这里TI开始进行优化,将传统的ABC稍作修改,
其中,A不变,为Uβ;
B为二分之根号三Uα+二分之一Uβ;
C为二分之根号三Uα-二分之一

2.找扇区

找扇区的方式也与传统的N=4C+2B+A不一样
先将其赋值为3再做判断

	v->VecSector=3;															v->VecSector=(v->tmp2> 0)?( v->VecSector-1):v->VecSector;					v->VecSector=(v->tmp3> 0)?( v->VecSector-1):v->VecSector;						v->VecSector=(v->tmp1< 0)?(7-v->VecSector) :v->VecSector;	

若A<0,则7-N,反之不变
若B>0,则N-1,反之不变
若C>0,则N-1,反之不变

3.矢量作用时间计算

这里也与传统的计算不同,舍弃掉了根号三*Ts/Udc
我们只看第一扇区与第四扇区,将画圈部分舍弃

在这里插入图片描述

4.矢量切换时间计算——七段式

将剩余部分的Tx与Ty代入到下列公式,下列公式也需要将Ts去掉,除以4去掉,再取反
例如:
第一扇区
Sa=Tx+Ty=根号三/2Uα+1/2Uβ=B
Sb=-Tx+Ty=3/2Uβ-根号三/2Uα=A-B
Sc=-Tx-Ty=-B

第四扇区
Sa=-Tx-Ty=根号三/2Uα+1/2Uβ=B
Sb=-Tx-Ty=3/2Uβ-根号三/2Uα=A-B
Sc=Tx+Ty=-B

此时,我们会发现,第一扇区与第四扇区的矢量作用时间的计算是一样的,也就是说,TI工程师是将ABC处赋值做了处理,对算法进行了优化。
我在这里举例第一扇区与第四扇区,同理可得第二扇区与第五扇区,第三扇区与第六扇区。

	 if(v->VecSector==1 || v->VecSector==4)                                 {   v->Ta= v->tmp2; 													v->Tb= v->tmp1-v->tmp3; 											v->Tc=-v->tmp2;														}		

在这里插入图片描述

三、参考文章

SVPWM分析、各个扇区详细计算以及Matlab仿真
FOC - SVPWM扇区判断
如何在TI官网上寻找DSP的例程
[问答] F28335电机矢量控制例程,svpwm生成中的一个问题如何解答
基于TMS320F28335的五段式和七段式SVPWM实现方法

总结

本文仅仅简单介绍了【电机控制】七段式SVPWM扇区、矢量作用时间计算——对比simplefoc与Ti例程,评论区欢迎讨论。

这篇关于【电机控制】七段式SVPWM扇区、矢量作用时间计算——对比simplefoc与Ti例程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962588

相关文章

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Java 继承和多态的作用及好处

《Java继承和多态的作用及好处》文章讲解Java继承与多态的概念、语法及应用,继承通过extends复用父类成员,减少冗余;多态实现方法重写与向上转型,提升灵活性与代码复用性,动态绑定降低圈复杂度... 目录1. 继承1.1 什么是继承1.2 继承的作用和好处1.3 继承的语法1.4 子类访问父类里面的成

Spring如何使用注解@DependsOn控制Bean加载顺序

《Spring如何使用注解@DependsOn控制Bean加载顺序》:本文主要介绍Spring如何使用注解@DependsOn控制Bean加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录1.javascript 前言2. 代码实现总结1. 前言默认情况下,Spring加载Bean的顺

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关