Python数据分析案例43——Fama-French回归模型资产定价(三因子/五因子)

本文主要是介绍Python数据分析案例43——Fama-French回归模型资产定价(三因子/五因子),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例背景

最近看到要做三因子模型的同学还挺多的,就是所谓的Fama-French回归模型,也就是CAMP资本资产定价模型的升级版,然后后面还升级为了五因子模型。

看起来眼花缭乱,其实抛开金融资产定价的背景,从机器学习角度来看,就是多元线性回归.......很low也很简单。

数据也很简单,以日度数据为例,y就是一个资产的日度收益率,例如一只股票的每天的收益率。X就是日度的五个因子数据,

  • mkt_rf [市场风险因子](rf是[无风险利率])
  • smb [规模风险因子]
  • hml [账面市值比风险因子]
  • rmw[盈利能力因子] 更高盈利能力的公司通常预示更健康的财务状况和更低的风险。
  • cma[投资风格因子]

为什么用的是线性回归模型,因为三因子五因子提出来的年代还没机器学习的思路,而且线性回归的解释能力强,能更好的表现不同因子的作用。虽然机器学习也能做这个数据集,但是其黑箱的过程不是很好解释。


数据

股票数据很好获取的,网上到处都有,本文使用akshare的接口来获取,后面代码会演示。

五因子的数据长这个样子:

 很全,从1994年到2024年4月都有,不仅有日度的五因子,还有很多其他的等价因子等。需要本次演示的全部代码和数据的同学可以参考:五因子数据。

股票选择:

选什么股票来演示这个案例呢,我懒得自己去找了,让kimi帮我找了几个2024年具有较好的价值的股票代码:   (本案例仅仅只是代码演示,不构成任何投资意见)

OK他提供了几个股票的编号和名称就行,下面开始写代码。


代码实现

导入数据分析常用的包:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns
import statsmodels.api as sm
plt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号

股票代码:,然后设定时间,我设定为23年的4月到24年的3月底

code_name={"600100": "同方股份","600626": "申达股份","000630": "铜陵有色","000850": "华茂股份","600368": "五洲交通","603766": "隆鑫通用","600105": "永鼎股份","600603": "广汇物流","002344": "海宁皮城","000407": "胜利股份","000883": "湖北能源"}
code_list=list(code_name.keys())
start_date='2023-04-01'  ;  end_date='2024-03-31'

下面获取这些股票的交易数据,

首先自定义一个获取股票交易日K的数据的代码:

import akshare as ak
# 定义获取A股历史交易数据的函数
def get_stock_data(stock_code, start_date, end_date):""":param stock_code: 股票代码,如 '000001':param start_date: 开始日期,格式为 'YYYYMMDD':param end_date: 结束日期,格式为 'YYYYMMDD':return: 指定时间段内的股票交易数据(DataFrame)"""# 使用 AkShare 的 stock_zh_a_hist 接口获取数据stock_df = ak.stock_zh_a_hist(symbol=stock_code, period="daily", start_date=start_date.replace('-',''), end_date=end_date.replace('-',''), adjust="qfq")stock_df['收益率'] = stock_df['收盘'].pct_change() return stock_df.dropna()

创建一个字典来存放获取的结果,然后遍历所有的股票代码,一个个获取,存入这个字典的值。

return_dict={}
#创建一个 ExcelWriter 对象
#writer = pd.ExcelWriter('股票数据.xlsx', engine='xlsxwriter')
for code in code_list:try:return_dict[code]=get_stock_data(stock_code=code,start_date=start_date,end_date=end_date)[['日期','收盘','收益率']].set_index('日期')#get_stock_data(stock_code=code,start_date='20230201',end_date='20240201').to_excel(writer, sheet_name=code)except:pass  
#writer.save()
#writer.close()

return_dict这个字典的键就是股票代码,值就是对应的股票交易数据的df数据框。

(ps:注释掉的地方是可以进行运行了,会把所有股票的交易数据存入一个excel表里面保存下来,需要的同学可以运行)

取出其中一个看看:

return_dict['600368'].head()

读取因子的数据,我筛选了时间和变量,保证读取进来的就是2023年4月到2024年3月底的数据。变量就是5个因子,别的变量就没要。

#读取因子数据
three_factors=pd.read_csv('fivefactor_daily.csv')[['trddy','mkt_rf','smb','hml','rmw','cma']].rename(columns={'trddy':'日期'}).set_index('日期')
three_factors=three_factors.loc['2023-04-01':'2024-03-31',:]
three_factors.index=pd.to_datetime(three_factors.index)
three_factors.head(3)

展示的前三行: 

再简单介绍一下这些变量的含义:

  • trddy [交易日期]
  • mkt_rf [市场风险因子]
  • smb [规模风险因子]
  • hml [账面市值比风险因子]
  • rf [无风险利率]
  • rmw[盈利能力因子] 更高盈利能力的公司通常预示更健康的财务状况和更低的风险。
  • cma[投资风格因子]

 需要这个数据的同学看前面。

自定义一些函数,学过金融的背景的同学应该都知道是什么作用的,主要都是测量一个资产的表现,衡量其收益的风险的。

def sum_return_ratio(price_list):'''实际总收益率'''price_list=price_list.to_numpy()return (price_list[-1]-price_list[0])/price_list[0]
def MaxDrawdown(price_list):'''最大回撤率'''i = np.argmax((np.maximum.accumulate(price_list) - price_list) / np.maximum.accumulate(price_list))  # 结束位置if i == 0:return 0j = np.argmax(price_list[:i])  # 开始位置return (price_list[j] - price_list[i]) / (price_list[j])
def sharpe_ratio(price_list,rf=0.000041):'''夏普比率'''#公式 夏普率 = (回报率均值 - 无风险率) / 回报率的标准差# pct_change()是pandas里面的自带的计算每日增长率的函数daily_return = price_list.pct_change()return daily_return.mean()-rf/ daily_return.std()
def Information_Ratio(price_list,rf=0.000041):'''信息比率'''chaoer=sum_return_ratio(price_list)-((1+rf)**365-1)return chaoer/np.std(price_list.pct_change()-rf)

三因子模型

不知道三因子是啥看看就行,反正就是线性回归......Python里面就用statsmodel就行。

自定义函数,可以输入股票的数据,然后返回这个股票的 '阿尔法','市场风险因子MKT','市值因子SMB','账面市值因子HML','实际总收益率','最大回测率':'夏普比率':,'信息比率','股票代码'。

如果参数mode输入的是‘五因子’的模型,则会多返回:盈利能力因子RMW','投资风格因子CMA,这两个数值。

def deal(code='',mode='三因子'): day_return = return_dict[code]#['收益率']day_return.index=pd.to_datetime(day_return.index)实际总收益率=sum_return_ratio(day_return['收盘'])最大回测率=MaxDrawdown(day_return['收盘'])夏普比率=sharpe_ratio(day_return['收盘'])信息比率=Information_Ratio(day_return['收盘'])zgpa_threefactor = pd.merge(three_factors, day_return,left_index=True, right_index=True)    if mode=='五因子':result = sm.OLS(zgpa_threefactor['收益率'], sm.add_constant(zgpa_threefactor.loc[:,['mkt_rf','smb','hml','rmw','cma']])).fit()betas=result.paramsreturn pd.DataFrame({'阿尔法':betas[0],'市场风险因子MKT':betas[1],'市值因子SMB':betas[2],'账面市值因子HML':betas[3],'盈利能力因子RMW':betas[4],'投资风格因子CMA':betas[5],'实际总收益率':实际总收益率,'最大回测率':最大回测率,'夏普比率':夏普比率,'信息比率':信息比率,'股票代码':code},index=[0])else:#zgpa_threefactor = pd.merge(three_factors, day_return,left_index=True, right_index=True)result = sm.OLS(zgpa_threefactor['收益率'], sm.add_constant(zgpa_threefactor.loc[:,['mkt_rf','smb','hml']])).fit()betas=result.paramsreturn pd.DataFrame({'阿尔法':betas[0],'市场风险因子MKT':betas[1],'市值因子SMB':betas[2],'账面市值因子HML':betas[3],'实际总收益率':实际总收益率,'最大回测率':最大回测率,'夏普比率':夏普比率,'信息比率':信息比率,'股票代码':code},index=[0])

 然后循环计算所有股票的这些数值,合并到一起,很方便:

df_results=pd.DataFrame()
for code,df_one in return_dict.items():result=deal(code=code) ;  result['股票名称']=code_name[code]df_results=pd.concat([df_results,result],axis=0,ignore_index=True)

选出阿尔法前十的股票 来分析画图

整理一下,我们按照阿尔法的大小排序,查看结果:

df_results=df_results[['股票代码', '股票名称','阿尔法', '市场风险因子MKT', '市值因子SMB', '账面市值因子HML', '实际总收益率', '最大回测率', '夏普比率', '信息比率']].sort_values(by='阿尔法',ascending=False)
df_results

看数据不够直观,我们画个图看看:
 

plt.figure(figsize=(10, 8),dpi=128)# 创建多子图布局
for i, column in enumerate(['阿尔法', '市场风险因子MKT', '市值因子SMB', '账面市值因子HML', '实际总收益率', '最大回测率', '夏普比率', '信息比率'], 1):plt.subplot(4, 2, i)plt.bar(df_results.head(10)['股票名称'], df_results.head(10)[column], color='skyblue')plt.title(column)plt.xticks(rotation=45)  # 旋转标签,避免重叠# 调整布局
plt.tight_layout()
plt.show()

可以从图中清楚的看到哪些股票的哪些指标是领先的。分析我就不多写了,写了可能也没那么通俗易懂,还是让我们的gpt同学来写:

‘’要分析这些股票的投资价值和风险,我们可以根据你提供的数据来进行一些基本的评估。数据中包括了阿尔法值(α)、市场风险因子(MKT)、市值因子(SMB)、账面市值因子(HML)、实际总收益率、最大回撤率、夏普比率以及信息比率。这些指标各自反映了股票的不同风险和收益特征:

  1. 阿尔法(α):表示股票相对于基准的超额回报。正值表示超出市场预期的回报,更高的正值通常被视为更好。

  2. 市场风险因子(MKT):系数高意味着股票与市场整体更同步,风险和市场相近。

  3. 市值因子(SMB):反映小市值股票与大市值股票的表现差异,正值表明倾向于小市值股票特性。

  4. 账面市值因子(HML):反映高账面市值比与低账面市值比股票的表现差异,正值表明倾向于价值股特性。

  5. 实际总收益率:这是投资者最终关心的实际收益率。

  6. 最大回撤率:表示股票价格在观察期内的最大下跌幅度,较小的数值表示下跌风险较低。

  7. 夏普比率:衡量调整风险后的收益,数值越高表示单位风险带来的额外回报越多。

  8. 信息比率:衡量管理绩效的一种指标,反映了投资组合超过基准回报的能力,数值越高表明超越基准的能力越强。

分析建议:

我们可以从以上各指标来分析哪些股票看起来更有投资价值:

  • 阿尔法值较高:永鼎股份、隆鑫通用、铜陵有色,这些股票在调整市场因素后显示了较好的超额回报。

  • 最大回撤率较低:湖北能源、胜利股份、同方股份等有较低的最大回撤率,这表明在最坏的情况下它们的价值减少较少,相对稳定。

  • 夏普比率和信息比率:隆鑫通用和铜陵有色的信息比率较高,虽然夏普比率为负,这可能表明在评估期内它们面临一定的波动性或负面风险。夏普比率为负通常是一个警示信号,需要结合其他因素综合考虑。

综合考虑以上指标,铜陵有色隆鑫通用在信息比率高的情况下,表现出了超越市场的潜力,尽管它们的夏普比率为负。永鼎股份虽然信息比率较低,但阿尔法值较高且夏普比率为正,显示了其稳定的超额收益能力。

在投资决策前,还应考虑其他因素如行业状况、公司基本面、市场整体环境等,这里的分析仅基于提供的数据。此外,负夏普比率需要进一步的调查和理解,可能涉及较高的风险。‘’


储存这个表:,方便复制到论文或者作业里面去。

### 储存结果
df_results.to_csv('三因子结果.csv',index=False)


五因子模型

和三因子差不多,就多了两个其他的变量,代码上前面都自定义好了,这里就很简单:

先循环遍历去回归

df_results=pd.DataFrame()
for code,df_one in return_dict.items():result=deal(code=code,mode='五因子') ;  result['股票名称']=code_name[code]df_results=pd.concat([df_results,result],axis=0,ignore_index=True)

然后整理结果,按照阿尔法从大到小排序,查看:

df_results=df_results[['股票代码', '股票名称','阿尔法', '市场风险因子MKT', '市值因子SMB', '账面市值因子HML', '盈利能力因子RMW','投资风格因子CMA','实际总收益率', '最大回测率', '夏普比率', '信息比率']].sort_values(by='阿尔法',ascending=False)
df_results

看数值不直观,画个图:

plt.figure(figsize=(10,10),dpi=128)# 创建多子图布局
for i, column in enumerate(['阿尔法', '市场风险因子MKT', '市值因子SMB', '账面市值因子HML', '盈利能力因子RMW','投资风格因子CMA', '实际总收益率', '最大回测率', '夏普比率', '信息比率'], 1):plt.subplot(5, 2, i)plt.bar(df_results.head(10)['股票名称'], df_results.head(10)[column], color='skyblue')plt.title(column)plt.xticks(rotation=45)  # 旋转标签,避免重叠plt.tight_layout()
plt.show()

gpt的分析:

关键指标分析

  1. 阿尔法(α):代表超额回报。较高的阿尔法值意味着股票在考虑了相关风险因子后,表现超出市场平均水平。

  2. 市场风险因子(MKT):衡量股票与市场整体波动的相关性。高值表明股票价格波动与市场紧密相关。

  3. 市值因子(SMB)账面市值因子(HML):这两个因子帮助评估股票在大小和价值方面的表现倾向。

  4. 盈利能力因子(RMW)投资风格因子(CMA):RMW高表明公司盈利能力强,CMA高则说明公司投资保守。

  5. 实际总收益率最大回测率夏普比率信息比率:这些都是评估投资回报和风险的重要指标。

根据数据分析

  • **隆鑫通用(603766)永鼎股份(600105)**的阿尔法值较高,但隆鑫通用的盈利能力因子(RMW)为负且较大,可能表明其盈利能力不稳定。永鼎股份的投资风格因子(CMA)非常高,暗示其投资策略较为保守。

  • **湖北能源(000883)铜陵有色(000630)**同样显示出较好的阿尔法值,且铜陵有色的盈利能力较好,但湖北能源的盈利能力和投资风格因子均为负,这可能指示了较高的风险。

  • 同方股份(600100)申达股份(600626)、**胜利股份(000407)海宁皮城(002344)**的阿尔法值为负,且信息比率也为负,这表明它们的表现可能不理想。

投资建议

  • 在这组数据中,铜陵有色可能是较为有吸引力的投资选择,因为它在盈利能力和市场相关性上表现较好,且有积极的超额回报。

  • 对于永鼎股份,尽管阿尔法值高,但需要进一步考察其极高的投资风格因子对未来表现的影响。

  • 对于显示出负阿尔法值和信息比率的股票,建议谨慎考虑,可能需要更多的分析来确定其表现不佳的具体原因。

投资决策应综合考虑这些指标以及其他外部因素,如行业趋势、公司基本面分析、宏观经济条件等。在做出投资选择前,进行全面的风险评估和市场研究是非常重要的。


### 储存结果
 

df_results.to_csv('五因子结果.csv',index=False)

 创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)


 (本案例仅共学习和参考,不构成任何投资意见) 

这篇关于Python数据分析案例43——Fama-French回归模型资产定价(三因子/五因子)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962240

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做