近似消息传递算法(AMP)单测量模型(SMV)

2024-05-05 12:28

本文主要是介绍近似消息传递算法(AMP)单测量模型(SMV),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、算法解决问题

很多人致力于解决SLM模型的求逆问题,即知道观测值和测量矩阵(字典之类的),要求未知变量的值。SLM又叫做标准线性模型,后续又在此基础上进行升级变为广义线性模型。即SLM是y=Ax+e,这里是线性关系,而到广义里可能就不单单只是Ax这个线性关系,可能是一个非线性函数y=F(x),此时就适合进一步的广义近似消息传递GAMP。并且在压缩感知CS出现后,又有很多人的兴趣转向与稀疏信号重构的问题。到底怎么才能解这个方程又快又准呢。大多数时候这二者不可兼得,我们要取其中之一。比如经典的贪婪算法或者叫追踪算法的衍生类,它们扮演着一步步找最优原子(最相关的原子)来扩展它的支撑集,直到迭代终止,这个过程涉及矩阵求逆,在测量矩阵维度高的情况下复杂度及其高。后续又有凸优化类的算法,由于本人涉猎不多,词穷。后面还有稀疏贝叶斯类算法(像什么伯努利高斯(Spike and slab)、稀疏贝叶斯学习(SBL))都是用来解决稀疏信号重构的问题。而稀疏信号重构就涉及通信领域的一个大规模机器通信或者叫IOT,而这个稀疏性又可以表示在OTFS系统下的信道物理特性。因此算法可以经过改进而应用到信道估计和活跃用户检测。或者是符号检测及活跃用户检测上。

2、算法由来

[1]Donoho, David L., Arian Maleki, and Andrea Montanari. "Message-passing algorithms for compressed sensing." Proceedings of the National Academy of Sciences 106.45 (2009): 18914-18919.

[2]Donoho, David L., Arian Maleki, and Andrea Montanari. "How to design message passing algorithms for compressed sensing." preprint (2011).

由Donoho等人在[1,2]中引入的近似消息传递(AMP)算法, AMP 是一个基于消息传递的框架,为解决压缩感知背景下的基追踪或基追踪去噪问题而开发。AMP 也可以被视为迭代阈值算法类的一个实例。然而,AMP 与此类其他算法的区别在于,它具有显着更好的稀疏性欠采样权衡。

3、算法

[3]Andersen, Michael Riis. "Sparse inference using approximate message passing." Technical University of Denmark, Department of Applied Mathematics and Computing (2014).

考虑线性方程组y=Ax ,其中  A \in \Re ^{^{m,n}}  、y \in \Re ^{^{m,1}}x\in \Re ^{^{n,1}}是真解。假设 A 的列已缩放至单位“2-范数”。给定问题的欠采样率 δ 将定义为 δ = m/n,k 表示真实解中非零元素的数量,稀疏度将定义为 ρ = k/m 。对于基追踪问题,AMP 的简单更新方程由下式给出

以上算法是无噪声版本的AMP,下式是我们常用的有噪声版本。通常噪声服从零均值固定方差的高斯或者复高斯分布,即高斯白噪声。

短短的三行公式,却有着很大魅力。其中 λ 是正则化参数。通过比较 BP 和 BPDN 的更新方程,可以看出,当 λ = 0 时,两种算法是相同的,因此我们只关注后者而不失一般性。

我读了一篇国外的硕士论文,eta函数是这麽推到的(来源于消息传递因子图,当然我也是这个方向的)当然这个图不清晰,我把论文[3]标题附在上方

当然eta的导数文中也有推到,需要的自己去查看即可

其实就是一个倒门函数,在特定区间为0,其他为1

4、算法代码(来源Github)

当然这个稀疏值个数也不是必须的,tau初始化为1也是可以正常运行的。

function xest = amp(y,sparsity,A,niter)[M,N]=size(A);
tau = sqrt(2*log10(M/sparsity)); % needs to be tuned in case of unknown prior sparsity level%% Approximate Message Passing for basis selection
% Initializing
xest = zeros(N,1);
z = y;
eta = @(x,beta) (x./abs(x)).*(abs(x)-beta).*(abs(x)-beta > 0); % denoising function
for iter=1:nitersigma = norm(z,2)/sqrt(M);xest = eta(xest + A'*z, tau*sigma);tmp = sum(abs(xest) > 0);z = y - A*xest + (tmp/M)*z;
end%[abs(xest) abs(x)]
end

5、稀疏信号重构demo

做一个测试demo,测量数为稀疏信号维度的一半,稀疏度13/128。噪声估计也是很小的。当然如果想设计信噪比下的恢复效果。可以根据信噪比公式去设置。就是那个dB转换公式,将其中一个已知,来求解另一个。比如dB=20,此时你生成的观测和稀疏向量是暂时知道的,通过他俩计算信号功率,然后得到噪声功率。当然想了解的人可以去关注我一个师兄的公众号MessagePassing或者是搜一搜。

信噪比SNR的两种计算方法

clc;
clear all;
N = 128; % length of vector to be recovered
M = 64; % number of measurement
A = (1/sqrt(2))*(normrnd(0,1/sqrt(M),M,N) + 1i*normrnd(0,1/sqrt(M),M,N)); % Sensing matrix construction for theroetical bound
x = zeros(N,1); % Initializing sparse vector to be recovered
k = 13; % Sparsity level
uset = randperm(N,k); 
x(uset) = rand(k,1) + 1i*rand(k,1); % Sparse vector initialized
noise = sqrt(1/2)*(normrnd(0,1,M,1) + 1i*normrnd(0,1,M,1)); % zero mean, unit covariance complex noise vector
var = 1e-11;
noise = sqrt(var)*noise;
y = A*x + noise; % create measurement
niter = 30; % number of iteration
%% Approximate Message Passing for basis selection
xest = amp(y,k,phi,niter);
plot(abs(x),'r-o');hold on;
plot(abs(xest),'b+-');
legend('xreal','xest');
title('recover  complex signal')
nmse=norm(xest-x).^2/(norm(x).^2);
disp(nmse)
%[abs(xest) abs(x)]

效果图及NMSE如下,当然想去与OMP做对比的也可以。OMP算法要知道稀疏度或者是一些带噪声根据阈值来判断的变体算法也不是很好,很容易找错。当然后续我也会更新一些其他的算法及代码

  8.3788e-11

6、根据论文复现的AMP0代码

function [x_est] = AMP_Lplace(y,A,maxiter)
%%根据论文写的AMP0算法,效果没有之前的GitHub上的好
[M,N]=size(A);
%% Approximate Message Passing for Laplace Prio
% Initializing
x_est = zeros(N,1);
z = y;
tau=1;
delta = M/N;
etafunc = @(x,beta) (x./abs(x)).*(abs(x)-beta).*(abs(x)-beta >0); % (abs(x)-beta >0) is logical num
etafuncdiff = @(x,beta) ((abs(x)-beta >=0));
for iter=1:maxiterx_est = etafunc(x_est + A'*z, tau);z = y - A*x_est + 1/delta*z.*mean(etafuncdiff(x_est + A'*z,tau));tau = tau/delta*mean(etafuncdiff(x_est + A'*z,tau));
end
clc;
clear all;
N = 128; % length of vector to be recovered
M = 64; % number of measurement
A = (1/sqrt(2))*(normrnd(0,1/sqrt(M),M,N) + 1i*normrnd(0,1/sqrt(M),M,N)); % Sensing matrix construction for theroetical bound
x = zeros(N,1); % Initializing sparse vector to be recovered
k = 13; % Sparsity level
uset = randperm(N,k); 
x(uset) = rand(k,1) + 1i*rand(k,1); % Sparse vector initialized
noise = sqrt(1/2)*(normrnd(0,1,M,1) + 1i*normrnd(0,1,M,1)); % zero mean, unit covariance complex noise vector
var = 1e-5;
noise = sqrt(var)*noise;
y = A*x + noise; % create measurement
niter = 30; % number of iteration
%% Approximate Message Passing for basis selection
x_est1 = amp(y,k,A,niter);
[x_est2] = AMP_Lplace(y,A,niter);
plot(abs(x),'r-o');hold on;
plot(abs(x_est1),'b+-');
plot(abs(x_est1),'g--');
legend('xreal','xest','xestmine');
title('recover  complex signal')
nmse1=norm(x_est1-x).^2/(norm(x).^2);
nmse2=norm(x_est2-x).^2/(norm(x).^2);
disp(nmse1)
disp(nmse2)
%[abs(xest) abs(x)]

7、根据论文复现AMPA算法

AMP0和AMPA分别用于BP和BPDN,后者更为通用性,多了一个正则化参数项

function [x_est] = AMP_Lplace(y,A,maxiter,lambda)
%%根据论文写的AMPA算法,效果没有之前的GitHub上的好
[M,N]=size(A);
%% Approximate Message Passing for Laplace Prio
% Initializing
x_est = zeros(N,1);
z = y;
tau=1;
if nargin<4
lambda=0;% regularization parameter
end
delta = M/N;
etafunc = @(x,beta) (x./abs(x)).*(abs(x)-beta).*(abs(x)-beta >0); % (abs(x)-beta >0) is logical num
etafuncdiff = @(x,beta) ((abs(x)-beta >=0));
for iter=1:maxiterx_est = etafunc(x_est + A'*z, tau+lambda);z = y - A*x_est + 1/delta*z.*mean(etafuncdiff(x_est + A'*z,tau+lambda));tau = (lambda+tau)/delta*mean(etafuncdiff(x_est + A'*z,tau+lambda));
end

算法感觉不太稳定,有时候会发散。效果还是没有Github上给的代码好。Github上给的代码好像利用了噪声的标准差

 sigma = norm(z,2)/sqrt(M);

至于为什么,还需要进一步探索。

这篇关于近似消息传递算法(AMP)单测量模型(SMV)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961718

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

AI赋能天气:微软研究院发布首个大规模大气基础模型Aurora

编者按:气候变化日益加剧,高温、洪水、干旱,频率和强度不断增加的全球极端天气给整个人类社会都带来了难以估计的影响。这给现有的天气预测模型提出了更高的要求——这些模型要更准确地预测极端天气变化,为政府、企业和公众提供更可靠的信息,以便做出及时的准备和响应。为了应对这一挑战,微软研究院开发了首个大规模大气基础模型 Aurora,其超高的预测准确率、效率及计算速度,实现了目前最先进天气预测系统性能的显著