近似消息传递算法(AMP)单测量模型(SMV)

2024-05-05 12:28

本文主要是介绍近似消息传递算法(AMP)单测量模型(SMV),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、算法解决问题

很多人致力于解决SLM模型的求逆问题,即知道观测值和测量矩阵(字典之类的),要求未知变量的值。SLM又叫做标准线性模型,后续又在此基础上进行升级变为广义线性模型。即SLM是y=Ax+e,这里是线性关系,而到广义里可能就不单单只是Ax这个线性关系,可能是一个非线性函数y=F(x),此时就适合进一步的广义近似消息传递GAMP。并且在压缩感知CS出现后,又有很多人的兴趣转向与稀疏信号重构的问题。到底怎么才能解这个方程又快又准呢。大多数时候这二者不可兼得,我们要取其中之一。比如经典的贪婪算法或者叫追踪算法的衍生类,它们扮演着一步步找最优原子(最相关的原子)来扩展它的支撑集,直到迭代终止,这个过程涉及矩阵求逆,在测量矩阵维度高的情况下复杂度及其高。后续又有凸优化类的算法,由于本人涉猎不多,词穷。后面还有稀疏贝叶斯类算法(像什么伯努利高斯(Spike and slab)、稀疏贝叶斯学习(SBL))都是用来解决稀疏信号重构的问题。而稀疏信号重构就涉及通信领域的一个大规模机器通信或者叫IOT,而这个稀疏性又可以表示在OTFS系统下的信道物理特性。因此算法可以经过改进而应用到信道估计和活跃用户检测。或者是符号检测及活跃用户检测上。

2、算法由来

[1]Donoho, David L., Arian Maleki, and Andrea Montanari. "Message-passing algorithms for compressed sensing." Proceedings of the National Academy of Sciences 106.45 (2009): 18914-18919.

[2]Donoho, David L., Arian Maleki, and Andrea Montanari. "How to design message passing algorithms for compressed sensing." preprint (2011).

由Donoho等人在[1,2]中引入的近似消息传递(AMP)算法, AMP 是一个基于消息传递的框架,为解决压缩感知背景下的基追踪或基追踪去噪问题而开发。AMP 也可以被视为迭代阈值算法类的一个实例。然而,AMP 与此类其他算法的区别在于,它具有显着更好的稀疏性欠采样权衡。

3、算法

[3]Andersen, Michael Riis. "Sparse inference using approximate message passing." Technical University of Denmark, Department of Applied Mathematics and Computing (2014).

考虑线性方程组y=Ax ,其中  A \in \Re ^{^{m,n}}  、y \in \Re ^{^{m,1}}x\in \Re ^{^{n,1}}是真解。假设 A 的列已缩放至单位“2-范数”。给定问题的欠采样率 δ 将定义为 δ = m/n,k 表示真实解中非零元素的数量,稀疏度将定义为 ρ = k/m 。对于基追踪问题,AMP 的简单更新方程由下式给出

以上算法是无噪声版本的AMP,下式是我们常用的有噪声版本。通常噪声服从零均值固定方差的高斯或者复高斯分布,即高斯白噪声。

短短的三行公式,却有着很大魅力。其中 λ 是正则化参数。通过比较 BP 和 BPDN 的更新方程,可以看出,当 λ = 0 时,两种算法是相同的,因此我们只关注后者而不失一般性。

我读了一篇国外的硕士论文,eta函数是这麽推到的(来源于消息传递因子图,当然我也是这个方向的)当然这个图不清晰,我把论文[3]标题附在上方

当然eta的导数文中也有推到,需要的自己去查看即可

其实就是一个倒门函数,在特定区间为0,其他为1

4、算法代码(来源Github)

当然这个稀疏值个数也不是必须的,tau初始化为1也是可以正常运行的。

function xest = amp(y,sparsity,A,niter)[M,N]=size(A);
tau = sqrt(2*log10(M/sparsity)); % needs to be tuned in case of unknown prior sparsity level%% Approximate Message Passing for basis selection
% Initializing
xest = zeros(N,1);
z = y;
eta = @(x,beta) (x./abs(x)).*(abs(x)-beta).*(abs(x)-beta > 0); % denoising function
for iter=1:nitersigma = norm(z,2)/sqrt(M);xest = eta(xest + A'*z, tau*sigma);tmp = sum(abs(xest) > 0);z = y - A*xest + (tmp/M)*z;
end%[abs(xest) abs(x)]
end

5、稀疏信号重构demo

做一个测试demo,测量数为稀疏信号维度的一半,稀疏度13/128。噪声估计也是很小的。当然如果想设计信噪比下的恢复效果。可以根据信噪比公式去设置。就是那个dB转换公式,将其中一个已知,来求解另一个。比如dB=20,此时你生成的观测和稀疏向量是暂时知道的,通过他俩计算信号功率,然后得到噪声功率。当然想了解的人可以去关注我一个师兄的公众号MessagePassing或者是搜一搜。

信噪比SNR的两种计算方法

clc;
clear all;
N = 128; % length of vector to be recovered
M = 64; % number of measurement
A = (1/sqrt(2))*(normrnd(0,1/sqrt(M),M,N) + 1i*normrnd(0,1/sqrt(M),M,N)); % Sensing matrix construction for theroetical bound
x = zeros(N,1); % Initializing sparse vector to be recovered
k = 13; % Sparsity level
uset = randperm(N,k); 
x(uset) = rand(k,1) + 1i*rand(k,1); % Sparse vector initialized
noise = sqrt(1/2)*(normrnd(0,1,M,1) + 1i*normrnd(0,1,M,1)); % zero mean, unit covariance complex noise vector
var = 1e-11;
noise = sqrt(var)*noise;
y = A*x + noise; % create measurement
niter = 30; % number of iteration
%% Approximate Message Passing for basis selection
xest = amp(y,k,phi,niter);
plot(abs(x),'r-o');hold on;
plot(abs(xest),'b+-');
legend('xreal','xest');
title('recover  complex signal')
nmse=norm(xest-x).^2/(norm(x).^2);
disp(nmse)
%[abs(xest) abs(x)]

效果图及NMSE如下,当然想去与OMP做对比的也可以。OMP算法要知道稀疏度或者是一些带噪声根据阈值来判断的变体算法也不是很好,很容易找错。当然后续我也会更新一些其他的算法及代码

  8.3788e-11

6、根据论文复现的AMP0代码

function [x_est] = AMP_Lplace(y,A,maxiter)
%%根据论文写的AMP0算法,效果没有之前的GitHub上的好
[M,N]=size(A);
%% Approximate Message Passing for Laplace Prio
% Initializing
x_est = zeros(N,1);
z = y;
tau=1;
delta = M/N;
etafunc = @(x,beta) (x./abs(x)).*(abs(x)-beta).*(abs(x)-beta >0); % (abs(x)-beta >0) is logical num
etafuncdiff = @(x,beta) ((abs(x)-beta >=0));
for iter=1:maxiterx_est = etafunc(x_est + A'*z, tau);z = y - A*x_est + 1/delta*z.*mean(etafuncdiff(x_est + A'*z,tau));tau = tau/delta*mean(etafuncdiff(x_est + A'*z,tau));
end
clc;
clear all;
N = 128; % length of vector to be recovered
M = 64; % number of measurement
A = (1/sqrt(2))*(normrnd(0,1/sqrt(M),M,N) + 1i*normrnd(0,1/sqrt(M),M,N)); % Sensing matrix construction for theroetical bound
x = zeros(N,1); % Initializing sparse vector to be recovered
k = 13; % Sparsity level
uset = randperm(N,k); 
x(uset) = rand(k,1) + 1i*rand(k,1); % Sparse vector initialized
noise = sqrt(1/2)*(normrnd(0,1,M,1) + 1i*normrnd(0,1,M,1)); % zero mean, unit covariance complex noise vector
var = 1e-5;
noise = sqrt(var)*noise;
y = A*x + noise; % create measurement
niter = 30; % number of iteration
%% Approximate Message Passing for basis selection
x_est1 = amp(y,k,A,niter);
[x_est2] = AMP_Lplace(y,A,niter);
plot(abs(x),'r-o');hold on;
plot(abs(x_est1),'b+-');
plot(abs(x_est1),'g--');
legend('xreal','xest','xestmine');
title('recover  complex signal')
nmse1=norm(x_est1-x).^2/(norm(x).^2);
nmse2=norm(x_est2-x).^2/(norm(x).^2);
disp(nmse1)
disp(nmse2)
%[abs(xest) abs(x)]

7、根据论文复现AMPA算法

AMP0和AMPA分别用于BP和BPDN,后者更为通用性,多了一个正则化参数项

function [x_est] = AMP_Lplace(y,A,maxiter,lambda)
%%根据论文写的AMPA算法,效果没有之前的GitHub上的好
[M,N]=size(A);
%% Approximate Message Passing for Laplace Prio
% Initializing
x_est = zeros(N,1);
z = y;
tau=1;
if nargin<4
lambda=0;% regularization parameter
end
delta = M/N;
etafunc = @(x,beta) (x./abs(x)).*(abs(x)-beta).*(abs(x)-beta >0); % (abs(x)-beta >0) is logical num
etafuncdiff = @(x,beta) ((abs(x)-beta >=0));
for iter=1:maxiterx_est = etafunc(x_est + A'*z, tau+lambda);z = y - A*x_est + 1/delta*z.*mean(etafuncdiff(x_est + A'*z,tau+lambda));tau = (lambda+tau)/delta*mean(etafuncdiff(x_est + A'*z,tau+lambda));
end

算法感觉不太稳定,有时候会发散。效果还是没有Github上给的代码好。Github上给的代码好像利用了噪声的标准差

 sigma = norm(z,2)/sqrt(M);

至于为什么,还需要进一步探索。

这篇关于近似消息传递算法(AMP)单测量模型(SMV)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961718

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

csu1328(近似回文串)

题意:求近似回文串的最大长度,串长度为1000。 解题思路:以某点为中心,向左右两边扩展,注意奇偶分开讨论,暴力解即可。时间复杂度O(n^2); 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>#include<string>#inclu

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了