【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架

本文主要是介绍【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚀Write In Front🚀
📝个人主页:令夏二十三
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏:深度学习
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊

文章目录

目录

文章目录

2.1 优化算法分类

2.2 超参数调试和BN及框架


2.1 优化算法分类

深度学习中的优化算法主要包括以下几种:

  1. 批量梯度下降(Batch Gradient Descent):这种方法涉及对整个训练数据集进行一次完整的遍历来计算梯度。然而,随着数据集的增大,这种方法的计算量也会增加。

  2. 小批量梯度下降(Mini-batch Gradient Descent):为了解决批量梯度下降的计算量问题,可以将数据集划分为多个较小的批次(mini-batches),并使用每个批次来计算梯度。这种方法既减少了计算量,又避免了随机梯度下降的噪声。

  3. 动量梯度下降(Momentum Gradient Descent):这种方法通过引入动量概念来加速学习过程。它考虑了之前的梯度信息,从而减少了学习过程中的震荡。

  4. RMSprop:这种方法在动量梯度下降的基础上,还考虑了梯度的平方,这有助于确定学习率,特别是在数据分布不均匀的情况下。

  5. Adam优化算法:这是一种自适应学习率的方法,结合了动量梯度下降和RMSprop的特点,能够更有效地处理非平稳目标函数。

这些优化算法在深度学习中起着关键作用,它们帮助模型更快地收敛并提高其性能。选择合适的优化算法取决于具体问题的性质和数据的特点。

除了这些梯度下降算法层面的优化,还有一些其他的优化手段,比如随着 epoch 的增大逐渐衰减学习率:(这里用t代表当前训练的迭代次数下标)

 它们主要可以改善 mini-batch 带来的训练末期参数反复震荡的问题,不过就是会导致超参数的增加。

2.2 超参数调试和BN及框架

在深度学习中,超参数调试是指调整模型中的超参数以优化模型性能的过程。这些超参数包括学习率、批量大小、隐藏层神经元数量、网络层数等。通过实验和观察,研究人员可以找到最佳的超参数设置,以提高模型的准确性和泛化能力。

下面按照重要程度对神经网络中的一些超参数进行排序:

  1. 学习率α
  2. mini-batch大小
  3. 隐藏层神经元数量
  4. 动量梯度下降法滤波系数β
  5. 隐藏层个数
  6. 学习率衰减系数
  7. Adam优化方法参数

批量归一化(Batch Normalization, BN)是一种深度学习技术,用于加速训练过程并减少过拟合的风险。BN通过对每个小批量数据在激活函数之前进行归一化处理,使得每层输入的分布更加稳定,从而有助于解决内部协变量偏移问题,提高模型的泛化能力。

批量归一化(Batch Normalization,简称BN)是深度学习中一种用于提高训练速度和稳定性的技术。它的主要作用是对神经网络的每一层的输入数据进行归一化处理,即使得这些数据的分布保持一致。这样做有几个好处:

  1. 加速学习过程:通过归一化,可以允许使用更高的学习率,而不担心数值问题,从而加速模型的收敛速度。

  2. 减少过拟合:BN通过减少内部协变量偏移(Internal Covariate Shift)现象,即每层输入分布的变化,有助于模型更好地泛化。

  3. 减少对初始化的依赖:在没有BN的情况下,网络中每一层的输入分布会随着前面层参数的更新而变化,这要求对网络进行细致的初始化。BN减轻了这一需求。

批量归一化的具体步骤如下:

  1. 计算批均值和批方差:对每个特征在小批量数据上进行平均和方差的计算。

  2. 归一化:对每个特征进行归一化处理,使其具有均值为0和方差为1的分布。这通常通过减去均值并除以方差的平方根来实现。

  3. 缩放和平移:引入两个可学习的参数——缩放因子(γ)和平移因子(β),对归一化后的数据进行缩放和平移,以恢复网络的表示能力。

  4. 应用激活函数:在归一化、缩放和平移之后,对数据进行非线性激活。

批量归一化的关键在于它是在每个小批量(mini-batch)上进行的,而不是在整个数据集上。这使得归一化过程可以随数据的流动而动态调整,而不是固定不变。

BN在深度学习模型中广泛应用,尤其是在卷积神经网络(CNN)和前馈神经网络中,它有助于模型的训练效率和性能提升。然而,值得注意的是,BN在某些情况下可能不是最佳选择,例如在循环神经网络(RNN)中,或者在数据批量非常小的情况下,BN的效果可能不佳。

这篇关于【深度学习】第二门课 改善深层神经网络 Week 2 3 优化算法、超参数调试和BN及其框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958156

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第