smac 路径优化器分析——距离成本和代价地图成本分析

2024-05-01 02:44

本文主要是介绍smac 路径优化器分析——距离成本和代价地图成本分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考

泰勒级数直观详解

前向差分,后向差分,中心差分

相关文章

smac 路径优化器分析——平滑度成本分析

smac 路径优化器分析——曲率成本分析

距离成本

距离成本函数

用优化后的点与原路径点的欧氏距离的平方作为成本。

下图中蓝色原点是原路径点,红色原点是优化后路径点。

fig.1 距离成本示意图

距离成本函数为:

Cost_{distance}=\overrightarrow{(p_i-x_i)} \cdot \overrightarrow{(p_i-x_i)}

p_i 是优化后的路径点,x_i 是原路径点。

距离成本梯度函数

距离成本函数表示为:

Cost_{distance}=\overrightarrow{(p_i-x_i)} \cdot \overrightarrow{(p_i-x_i)}= (p_{ix}-x_{ix})^2+(p_{iy}-x_{iy})^2

偏导数可以得到:

\frac{\partial{p_i}}{\partial x}=2*(p_{ix}-x_{ix})

\frac{\partial{p_i}}{\partial y}=2*(p_{iy}-x_{iy})

代价地图成本

代价地图成本函数

Smac 直接使用路径点所在的 costmap2D 地图栅格的代价值的平方作为代价地图成本。
下图中黄色圆点表示路径点,背景是 costmap2D 地图。

fig.2 代价地图成本示意图

代价地图成本函数为:

Cost_{costmap}=(costmap.getCost(p_{ix}, p_{iy}))^2

代价地图成本梯度函数

按源码提示是根据泰勒级数展开计算的,但是我颠来倒去都推导不出源码的公式。゚(TヮT)゚。

如果是使用中心差分法,那么 Δh 步进越小,计算得到的梯度才越精确。在栅格地图中最小自变量偏移是 1 个栅格。

令 f(x)=costmap.getCost(x),那么代价地图成本为 c(x)=f(x)^2,根据中心差分法,在点 a 处对 x 求偏导有

\begin{aligned} \frac{\partial c(x,y)}{\partial x} &= \frac{\partial f(x_a,y_a)^2}{\partial x} \\ &= 2*f(x_a,y_a)*f'(x_a,y_a) \\ &=2*f(x_a,y_a) \frac{f(x_a+1,y_a)-f(x_a-1,y_a)}{2} \\ &=f(x_a,y_a)(f(x_a+1,y_a)-f(x_a-1,y_a)) \end{aligned}

同理,在点 a 处对 y 求偏导有

\frac{\partial c(x,y)}{\partial y}=f(x_a,y_a)(f(x_a,y_a+1)-f(x_a,y_a-1))

代价地图梯度函数优化对比

smac 的 smoother 路径平滑器仅打开代价地图成本和距离成本函数和成本梯度函数的优化对比。
绿色路径是随机生成的路径,红色路径是 smac 源码优化后的路径,黄色路径是使用本文代价地图成本梯度函数优化后的路径。由于路径的起点和终点并不参与优化过程,所以起点和终点的位置始终不会变,这里的路径发布我去掉了优化后路径的终点。

新旧对比代价梯度-红旧黄新


为了观察清楚代价地图成本优化效果,costmap2d 的膨胀半径增大,同时将代价缩放因子调整到合适的参数,使得代价值能够平缓地在膨胀半径边缘降到最低。

这篇关于smac 路径优化器分析——距离成本和代价地图成本分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950543

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT