机器学习:基于Sklearn、XGBoost框架,使用逻辑回归、支持向量机和XGBClassifier来诊断并预测一个人是否患有自闭症

本文主要是介绍机器学习:基于Sklearn、XGBoost框架,使用逻辑回归、支持向量机和XGBClassifier来诊断并预测一个人是否患有自闭症,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

前言

系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎
在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控递归单元、大型语言模型和强化学习模型

自闭症是一种神经系统疾病,会影响一个人与他人互动、与他人进行眼神交流、学习能力以及一个人的其他行为和社交能力的能力。但是自闭症的确诊多因患儿的表现较难确诊,需通过详细的生长发育史、病史、精神检查及排除其他广泛性发育障碍来协助诊断。运用一些筛查性的量表进行初步筛查,最后通过儿童精神科系统检查后才能确诊。但是,如果我们使用机器学习来预测一个人是否患有自闭症,会怎么样呢?这正是我们将在本文中讨论的内容。

目录

  • 1. 相关库和数据集
    • 1.1 相关库介绍
    • 1.2 数据集介绍
    • 1.3 组织并检查数据
    • 1.4 数据清理
  • 2. 探索性数据分析
    • 2.1 检查数据的平衡
    • 2.2 探索数据的地理位置
    • 2.3 检查数据的偏度
  • 3. 特征工程
    • 3.1 探讨年龄组病例数
    • 3.2 探讨临床评分病例数
    • 3.3 消除数据的偏度
  • 4. 模型训练
  • 5. 模型评估

1. 相关库和数据集

1.1 相关库介绍

Python 库使我们能够非常轻松地处理数据并使用一行代码执行典型和复杂的任务。

  • Pandas – 该库有助于以 2D 数组格式加载数据框,并具有多种功能,可一次性执行分析任务。
  • Numpy – Numpy 数组速度非常快,可以在很短的时间内执行大型计算。
  • Matplotlib/Seaborn – 此库用于绘制可视化效果。
  • Sklearn – 包含多个库,这些库具有预实现的功能,用于执行从数据预处理到模型开发和评估的任务。
  • XGBoost – 包含 eXtreme Gradient Boosting 机器学习算法,是帮助我们实现高精度预测的算法之一。
  • Imblearn – 此模块包含一个函数,可用于处理与数据不平衡相关的问题。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from scipy.io import arff
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn import metrics
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from imblearn.over_sampling import RandomOverSamplerimport warnings
warnings.filterwarnings('ignore')

1.2 数据集介绍

现在,让我们将数据集加载到 pandas 数据框中并打印其前五行。

df = pd.read_csv('train.csv')
print(df.head())

在这里插入图片描述

df.shape
(800, 22)

该数据集包含 800 个自闭症的实例或数据,包括 22 个属性或特征的数据。我们将使用这些功能来训练我们的模型。

1.3 组织并检查数据

df.info()

在这里插入图片描述
根据上述有关每列数据的信息,我们可以观察到没有空值。

df.describe().T

在这里插入图片描述

1.4 数据清理

从主要来源获得的数据被称为原始数据,需要大量的预处理,然后才能从中得出任何结论或对其进行一些建模。这些预处理步骤称为数据清理,它包括异常值删除、空值插补以及删除数据输入中的任何类型的差异。

df['ethnicity'].value_counts()

在这里插入图片描述
在上面的两个输出中,我们可以观察到一些歧义,即有“?”、“其他”和“其他”,它们都必须相同,因为它们是未知的,或者我们可以说空值已被一些指示符替换。

df['relation'].value_counts()

在这里插入图片描述
此列的情况也是如此,因此,让我们清理此数据,然后将“yes”和“no”转换为 0 和 1。

df = df.replace({'yes':1, 'no':0, '?':'Others', 'others':'Others'})

现在,我们已经对数据进行了一些清理,以便从中获取见解。

2. 探索性数据分析

EDA是一种使用视觉技术分析数据的方法。它用于发现趋势和模式,或借助统计摘要和图形表示来检查假设。在这里,我们将看到如何检查数据的不平衡和数据的偏度。

2.1 检查数据的平衡

plt.pie(df['Class/ASD'].value_counts().values, autopct='%1.1f%%')
plt.show()

在这里插入图片描述
我们拥有的数据集是高度不平衡的。如果我们使用这些数据来训练我们的模型,那么模型将面临很难预测阳性类别的问题,这是我们在这里的主要目标,即高精度地预测一个人是否患有自闭症。

ints = []
objects = []
floats = []for col in df.columns:
if df[col].dtype == int:ints.append(col)
elif df[col].dtype == object:objects.append(col)
else:floats.append(col)

现在,我们根据列包含的数据类型对列进行隔离,因此现在我们将能够根据数据类型执行适当的分析。

ints.remove('ID')
ints.remove('Class/ASD')

“ID”列将包含每行的唯一值,对于“Class/ASD”列,我们已经分析了它的分布,因此,这就是为什么在上面的代码中删除它们的原因。

plt.subplots(figsize=(15,15))for i, col in enumerate(ints):
plt.subplot(4,3,i+1)
sb.countplot(df[col], hue=df['Class/ASD'])
plt.tight_layout()
plt.show()

在这里插入图片描述
从这些图中,我们可以得出结论,如果某个指标的分数为 0,那么该人没有自闭症的机会非常高,除非是A10_Score。

plt.subplots(figsize=(15, 30))for i, col in enumerate(objects):plt.subplot(5, 3, i+1)sb.countplot(df[col], hue=df['Class/ASD'])plt.xticks(rotation=60)
plt.tight_layout()
plt.show()

在这里插入图片描述
从上面的图中,我们可以得出以下观察结果:

  • 所有数据点的Age_desc都是一样的。
  • 这个used_app_before功能似乎没有用,否则它将成为数据泄漏的来源。
  • 在这里,男性患自闭症的几率似乎高于女性,但事实并非如此,因为我们没有相同数量的男性和女性的例子。

2.2 探索数据的地理位置

plt.figure(figsize=(15,5))
sb.countplot(data=df, x='country_of_res', hue='Class/ASD')
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述
在一些地方,该国大约50%的可用数据患有自闭症,而在某些地方,这一比例相当低。这意味着一个人的地理位置也给出了患有自闭症的想法。

2.3 检查数据的偏度

plt.subplots(figsize=(15,5))for i, col in enumerate(floats):plt.subplot(1,2,i+1)sb.distplot(df[col])
plt.tight_layout()
plt.show()

在这里插入图片描述
两个连续数据都是偏斜的,左边一个是正的,右边的是一个负偏态。

plt.subplots(figsize=(15,5))for i, col in enumerate(floats):plt.subplot(1,2,i+1)sb.boxplot(df[col])
plt.tight_layout()
plt.show()

在这里插入图片描述

df = df[df['result']>-5]
df.shape
(798, 22)

所以,在这里我们只丢失了两个数据点。

3. 特征工程

特征工程有助于从现有特征中派生出一些有价值的特征。这些额外的功能有时有助于显著提高模型的性能,当然也有助于更深入地了解数据。

3.1 探讨年龄组病例数

# This functions make groups by taking
# the age as a parameter
def convertAge(age):if age < 4:return 'Toddler'elif age < 12:return 'Kid'elif age < 18:return 'Teenager'elif age < 40:return 'Young'else:return 'Senior'df['ageGroup'] = df['age'].apply(convertAge)

现在,让我们探讨每个年龄组的病例数。

sb.countplot(x=df['ageGroup'], hue=df['Class/ASD'])
plt.show()

在这里插入图片描述
在这里,我们可以得出结论,幼儿群体患自闭症的几率较低。

3.2 探讨临床评分病例数

def add_feature(data):# Creating a column with all values zero
data['sum_score'] = 0
for col in data.loc[:,'A1_Score':'A10_Score'].columns:# Updating the 'sum_score' value with scores# from A1 to A10data['sum_score'] += data[col]# Creating a random data using the below three columns
data['ind'] = data['austim'] + data['used_app_before'] + data['jaundice']return datadf = add_feature(df)

在上面的代码块中,我们刚刚总结了从 A1 到 A10 给出的临床评分。

sb.countplot(x=df['sum_score'], hue=df['Class/ASD'])
plt.show()

在这里插入图片描述
另一个惊人的观察结果:总分越高,患自闭症的几率也越高,同样,对于低于 5 分的总分较低,该人患有自闭症的情况很少见。

3.3 消除数据的偏度

# Applying log transformations to remove the skewness of the data.
df['age'] = df['age'].apply(lambda x: np.log(x))

提供给我们的年龄数据是正偏态的。我们知道偏斜数据会影响模型的性能,因此我们将应用对数转换来消除数据的偏斜。

sb.distplot(df['age'])
plt.show()

在这里插入图片描述
现在,已成功消除数据的偏度

def encode_labels(data):for col in data.columns:# Here we will check if datatype# is object then we will encode itif data[col].dtype == 'object':le = LabelEncoder()data[col] = le.fit_transform(data[col])return datadf = encode_labels(df)# Making a heatmap to visualize the correlation matrix
plt.figure(figsize=(10,10))
sb.heatmap(df.corr() > 0.8, annot=True, cbar=False)
plt.show()

在这里插入图片描述
从上面的热图中,我们可以看到,在基于此数据训练模型之前,我们将删除一个高度相关的特征,因为高度相关的特征无助于学习数据中的有用模式。

4. 模型训练

现在,我们将特征和目标变量分开,并将它们拆分为训练和测试数据,通过这些数据,我们将选择在验证数据上表现最好的模型。

removal = ['ID', 'age_desc', 'used_app_before', 'austim']
features = df.drop(removal + ['Class/ASD'], axis=1)
target = df['Class/ASD']

让我们将数据拆分为训练数据和验证数据。此外,数据之前是不平衡的,现在我们将使用随机采样器来平衡它,在这种方法中,我们从少数类中抽取一些点并重复多次,以便两个类获得平衡。

X_train, X_val, \Y_train, Y_val = train_test_split(features, target,test_size = 0.2, random_state=10)# As the data was highly imbalanced we will balance it by adding repetitive rows of minority class.
ros = RandomOverSampler(sampling_strategy='minority',random_state=0)
X, Y = ros.fit_resample(X_train,Y_train)
X.shape, Y.shape

输出

((1026, 20), (1026,))

现在,让我们对数据进行归一化,以获得稳定和快速的训练。

# Normalizing the features for stable and fast training.
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_val = scaler.transform(X_val)

现在,让我们训练一些最先进的机器学习模型,并将它们与我们的数据进行比较。

models = [LogisticRegression(), XGBClassifier(), SVC(kernel='rbf')]for model in models:model.fit(X, Y)print(f'{model} : ')print('Training Accuracy : ', metrics.roc_auc_score(Y, model.predict(X)))print('Validation Accuracy : ', metrics.roc_auc_score(Y_val, model.predict(X_val)))print()

在这里插入图片描述

5. 模型评估

从上述精度来看,我们可以说 Logistic RegressionSVC() 分类器在验证数据上表现更好,验证数据和训练数据之间的差异较小。让我们使用 Logistic 回归模型绘制验证数据的混淆矩阵。

metrics.plot_confusion_matrix(models[0], X_val, Y_val)
plt.show()

在这里插入图片描述

这篇关于机器学习:基于Sklearn、XGBoost框架,使用逻辑回归、支持向量机和XGBClassifier来诊断并预测一个人是否患有自闭症的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948350

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi