论文笔记1《基于ID3决策树改进算法的客户流失预测分析》

2024-04-29 15:18

本文主要是介绍论文笔记1《基于ID3决策树改进算法的客户流失预测分析》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《计算机科学》 2010


部分摘要:指出了该算法的取指偏向性以及运算效率不高等缺点,在此基础上提出了改进的ID3算法,该算法通过引入先验知识度参数,有效克服ID3算法中的取值偏向性和运算效率不高等问题。



算法改进:针对传统的ID3算法的缺点与不足进行以下三点尝试性的改进。

(1)  引入权重因子m,设属性A有n种取值,那么m=1/n(可根据经验设定);

则G(A)=[I(p,n)-E(A)]*m

(2)  定义函数H(p,1-p)=-p*log(p)-(1-p)log(1-p), 【其中logx以2为底】;

(3)  事后剪枝;自下而上检查内部节点,如果子树产生的错误大于叶节点表示代替它所产生的错误,就剪掉子树;



 

评价:

客户流失评价矩阵:

 

预测流失

预测不流失

合计

实际流失

TP

FN

TP+FN

实际不流失

FP

TN

FP+TN

合计

TP+FP

FN+TN

TP+FN+FP+TN

TP(True Position);FP(False Position);

FN(False Negatives);TN(True Negatives)

预测命中率=*100%

预测覆盖率=*100%

预测命中率是描述模型精确度的指标(在本文中是预测流失中实际流失的比例)

预测覆盖率是描述模型普适性的指标(本文中是实际流失中预测正确的比例)

 

 

实验结果对比:

取2009年5月份前的历史数据,随机抽取2000条记录进行建模,预测模型对训练集的预测结果:

 

预测流失

预测不流失

合计

实际流失

304

60

364

实际不流失

20

1616

1636

合计

324

1676

2000

预测命中率=*100%=93.33%

预测覆盖率=*100%=83.62%

取2009年5月份的历史数据,随机抽取2000条记录进行预测,则模型对测试集的预测结果:

 

预测流失

预测不流失

合计

实际流失

252

98

348

实际不流失

106

1548

1652

合计

358

1642

2000

预测命中率=*100%=70.39%

预测覆盖率=*100%=72.41%

结果对比检验表明,模型的预测命中率与覆盖率比训练情况稍差,但依然保持了比较好的预测性能。

另外,为了验证改进算法的有效性,采用同样的数据集建模,在相同的计算机平台上将改进后的决策树算法的效率和原来ID3决策树算法的效率进行对比,其计算效率提高了23.5左右,这充分说明使用该改进算法能够以更高的效率和准确率构造决策树,基本达到了实验要求。

 

 

部分结束语:

结果表明,改进算法不仅能更快更高效地建立模型,而且可以提供更高的检测率和更低的误检率。改进的ID3算法的关键是引入调整因子,而调整因子如何确定是以后要进一步研究的工作。

 

这篇关于论文笔记1《基于ID3决策树改进算法的客户流失预测分析》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946444

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意