论文笔记1《基于ID3决策树改进算法的客户流失预测分析》

2024-04-29 15:18

本文主要是介绍论文笔记1《基于ID3决策树改进算法的客户流失预测分析》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《计算机科学》 2010


部分摘要:指出了该算法的取指偏向性以及运算效率不高等缺点,在此基础上提出了改进的ID3算法,该算法通过引入先验知识度参数,有效克服ID3算法中的取值偏向性和运算效率不高等问题。



算法改进:针对传统的ID3算法的缺点与不足进行以下三点尝试性的改进。

(1)  引入权重因子m,设属性A有n种取值,那么m=1/n(可根据经验设定);

则G(A)=[I(p,n)-E(A)]*m

(2)  定义函数H(p,1-p)=-p*log(p)-(1-p)log(1-p), 【其中logx以2为底】;

(3)  事后剪枝;自下而上检查内部节点,如果子树产生的错误大于叶节点表示代替它所产生的错误,就剪掉子树;



 

评价:

客户流失评价矩阵:

 

预测流失

预测不流失

合计

实际流失

TP

FN

TP+FN

实际不流失

FP

TN

FP+TN

合计

TP+FP

FN+TN

TP+FN+FP+TN

TP(True Position);FP(False Position);

FN(False Negatives);TN(True Negatives)

预测命中率=*100%

预测覆盖率=*100%

预测命中率是描述模型精确度的指标(在本文中是预测流失中实际流失的比例)

预测覆盖率是描述模型普适性的指标(本文中是实际流失中预测正确的比例)

 

 

实验结果对比:

取2009年5月份前的历史数据,随机抽取2000条记录进行建模,预测模型对训练集的预测结果:

 

预测流失

预测不流失

合计

实际流失

304

60

364

实际不流失

20

1616

1636

合计

324

1676

2000

预测命中率=*100%=93.33%

预测覆盖率=*100%=83.62%

取2009年5月份的历史数据,随机抽取2000条记录进行预测,则模型对测试集的预测结果:

 

预测流失

预测不流失

合计

实际流失

252

98

348

实际不流失

106

1548

1652

合计

358

1642

2000

预测命中率=*100%=70.39%

预测覆盖率=*100%=72.41%

结果对比检验表明,模型的预测命中率与覆盖率比训练情况稍差,但依然保持了比较好的预测性能。

另外,为了验证改进算法的有效性,采用同样的数据集建模,在相同的计算机平台上将改进后的决策树算法的效率和原来ID3决策树算法的效率进行对比,其计算效率提高了23.5左右,这充分说明使用该改进算法能够以更高的效率和准确率构造决策树,基本达到了实验要求。

 

 

部分结束语:

结果表明,改进算法不仅能更快更高效地建立模型,而且可以提供更高的检测率和更低的误检率。改进的ID3算法的关键是引入调整因子,而调整因子如何确定是以后要进一步研究的工作。

 

这篇关于论文笔记1《基于ID3决策树改进算法的客户流失预测分析》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946444

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个