论文笔记1《基于ID3决策树改进算法的客户流失预测分析》

2024-04-29 15:18

本文主要是介绍论文笔记1《基于ID3决策树改进算法的客户流失预测分析》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《计算机科学》 2010


部分摘要:指出了该算法的取指偏向性以及运算效率不高等缺点,在此基础上提出了改进的ID3算法,该算法通过引入先验知识度参数,有效克服ID3算法中的取值偏向性和运算效率不高等问题。



算法改进:针对传统的ID3算法的缺点与不足进行以下三点尝试性的改进。

(1)  引入权重因子m,设属性A有n种取值,那么m=1/n(可根据经验设定);

则G(A)=[I(p,n)-E(A)]*m

(2)  定义函数H(p,1-p)=-p*log(p)-(1-p)log(1-p), 【其中logx以2为底】;

(3)  事后剪枝;自下而上检查内部节点,如果子树产生的错误大于叶节点表示代替它所产生的错误,就剪掉子树;



 

评价:

客户流失评价矩阵:

 

预测流失

预测不流失

合计

实际流失

TP

FN

TP+FN

实际不流失

FP

TN

FP+TN

合计

TP+FP

FN+TN

TP+FN+FP+TN

TP(True Position);FP(False Position);

FN(False Negatives);TN(True Negatives)

预测命中率=*100%

预测覆盖率=*100%

预测命中率是描述模型精确度的指标(在本文中是预测流失中实际流失的比例)

预测覆盖率是描述模型普适性的指标(本文中是实际流失中预测正确的比例)

 

 

实验结果对比:

取2009年5月份前的历史数据,随机抽取2000条记录进行建模,预测模型对训练集的预测结果:

 

预测流失

预测不流失

合计

实际流失

304

60

364

实际不流失

20

1616

1636

合计

324

1676

2000

预测命中率=*100%=93.33%

预测覆盖率=*100%=83.62%

取2009年5月份的历史数据,随机抽取2000条记录进行预测,则模型对测试集的预测结果:

 

预测流失

预测不流失

合计

实际流失

252

98

348

实际不流失

106

1548

1652

合计

358

1642

2000

预测命中率=*100%=70.39%

预测覆盖率=*100%=72.41%

结果对比检验表明,模型的预测命中率与覆盖率比训练情况稍差,但依然保持了比较好的预测性能。

另外,为了验证改进算法的有效性,采用同样的数据集建模,在相同的计算机平台上将改进后的决策树算法的效率和原来ID3决策树算法的效率进行对比,其计算效率提高了23.5左右,这充分说明使用该改进算法能够以更高的效率和准确率构造决策树,基本达到了实验要求。

 

 

部分结束语:

结果表明,改进算法不仅能更快更高效地建立模型,而且可以提供更高的检测率和更低的误检率。改进的ID3算法的关键是引入调整因子,而调整因子如何确定是以后要进一步研究的工作。

 

这篇关于论文笔记1《基于ID3决策树改进算法的客户流失预测分析》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946444

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结