代码随想录算法训练营第五十三天| 1143.最长公共子序列 ,1035.不相交的线,53. 最大子序和 动态规划

本文主要是介绍代码随想录算法训练营第五十三天| 1143.最长公共子序列 ,1035.不相交的线,53. 最大子序和 动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

1143.最长公共子序列

题目链接:1143.最长公共子序列

代码随想录题解:​​​​​​​1143.最长公共子序列

视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili

解题思路:

        一开始试图用四层循环暴力法来做,就超时了。

看完代码随想录之后的想法 

        这里主要是dp定义跟前面有点不一样,随之的递推公式也不一样。

        dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j],所以最后得到的公共子序列不一定要包含text1[i-1]和text2[i-1]。

        递推公式有两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

dp的第一行和第一列分别表示text1或text2和空字符串的最长公共子序列,必然初始化为0。

class Solution {public int longestCommonSubsequence(String text1, String text2) {int[][] dp = new int[text1.length()+1][text2.length()+1];int result = 0;for (int i = 1; i < text1.length()+1; i++) {for (int j = 1; j < text2.length()+1; j++) {if (text1.charAt(i-1) == text2.charAt(j-1)) {dp[i][j] = dp[i-1][j-1]+1;} else {dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);}result = Math.max(result, dp[i][j]);}}return result;}
}

遇到的困难

        序列和连续序列的计算会有很多不一样,子序列要考虑的可能性更多。

1035.不相交的线

题目链接:1035.不相交的线

代码随想录题解:​​​​​​​1035.不相交的线

视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线_哔哩哔哩_bilibili

解题思路:

        没有思路看答案。

看完代码随想录之后的想法 

        直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!        

class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int[][] dp = new int[nums1.length+1][nums2.length+1];int result = 0;for (int i = 1; i < nums1.length + 1; i++) {for (int j = 1; j < nums2.length + 1; j++) {if (nums1[i-1] == nums2[j-1]) {dp[i][j] = dp[i-1][j-1] + 1;} else {dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]);}result = Math.max(result, dp[i][j]);}}return result;}
}

遇到的困难

        题目翻译成最大相同子序列有点困难。

53. 最大子序和

题目链接:​​​​​​​53. 最大子序和

代码随想录题解:53. 最大子序和

视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和_哔哩哔哩_bilibili

解题思路:

        dp定义:对于nums[0]-nums[i]的序列,其子序列包含nums[i]时,最大子序和的值。

        递推公式:因为要求的是连续序列的和,所以可以根据dp[i-1]和nums[i]推出dp[i]的值。如果dp[i-1]+nums[i] > nums[i],说明nums[i]可以纳入dp[i-1]的子序列,dp[i]=dp[i-1]+nums[i] ,否则从nums[i]开始开启一个新的序列,dp[i]=nums[i]。

        初始化dp[0]为nums[0], 从前往后遍历即可。

class Solution {public int maxSubArray(int[] nums) {if (nums.length == 1) return nums[0];int[] dp = new int[nums.length];int result = nums[0];dp[0] = nums[0];for (int i = 1; i < nums.length; i++) {dp[i] = Math.max(nums[i], dp[i-1] + nums[i]);result = Math.max(result, dp[i]);}return result;}
}

看完代码随想录之后的想法 

        因为dp的依赖关系是只有前后两个相关,所以可以简化dp的空间占用。

//因为dp[i]的递推公式只与前一个值有关,所以可以用一个变量代替dp数组,空间复杂度为O(1)
class Solution {public int maxSubArray(int[] nums) {int res = nums[0];int pre = nums[0];for(int i = 1; i < nums.length; i++) {pre = Math.max(pre + nums[i], nums[i]);res = Math.max(res, pre);}return res;}
}

遇到的困难

        一开始result没有初始化为dp[0],而是初始化为Interger.MIN_VALUE,导致数组只有一个数字时返回的结果不对,还是要维持一下result的定义,提前初始化为dp[0]才对。

今日收获

        dp真是千变万化,思路需要非常清晰了。子序列的题目有点难。

这篇关于代码随想录算法训练营第五十三天| 1143.最长公共子序列 ,1035.不相交的线,53. 最大子序和 动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944984

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪