4.18.2 EfficientViT:具有级联组注意力的内存高效Vision Transformer

本文主要是介绍4.18.2 EfficientViT:具有级联组注意力的内存高效Vision Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

现有Transformer模型的速度通常受到内存低效操作的限制,尤其是MHSA(多头自注意力)中的张量整形和逐元素函数。

设计了一种具有三明治布局的新构建块,即在高效FFN(前馈)层之间使用单个内存绑定的MHSA,从而提高内存效率,同时增强通道通信。

注意力图在头部之间具有高度相似性,导致计算冗余。

为了解决这个问题,提出了一个级联的组注意力模块,为注意力头提供完整特征的不同分割。


Transformer模型的速度通常受内存限制。内存访问延迟阻碍了GPU/CPU中计算能力的充分利用,从而对Transformer的运行速度产生严重的负面影响。

内存效率最低的操作是多头自注意力(MHSA)中频繁的张量整形和逐元素函数。通过适当调整MHSA和FFN(前馈网络)层之间的比例,可以在不影响性能的情况下显著减少内存访问时间。

通过向每个头提供不同的特征来显式分解每个头的计算来缓解冗余问题。 

为了提高参数效率,我们使用结构化剪枝来识别最重要的网络组件,并总结模型加速参数重新分配的经验指导。

结构化剪枝是在神经网络已经训练好的情况下,按照一定的剪枝策略来修剪掉一部分神经元或连接,从而减少模型的大小,保持模型的精度,形成一个新的更加简单的模型。

结构化剪枝能够直接减少卷积核的参数量和运算量,减少网络运行时的内存占用,不需要特征运算库即可实现运算加速。

 EfficientViT

  1. MBConv模块使用深度可分离卷积,即每个输入通道只与一个卷积核进行卷积,然后再将结果相加,从而减少了参数数量。
  2. Lighted Multi-scale Self-attention (轻量级多尺度自注意力)

DWConv指的是深度卷积,GConv指的是组卷积。

深度卷积是组卷积的极端情况,即分组数g等于输入通道数cin,也等于输出通道数cout

组卷积常用在轻量型高效网络中,因为它用少量的参数量和运算量就能生成大量的feature
map,而大量的feature map意味着能够编码更多的信息。

组卷积指的是什么:

组卷积是将输入特征图分成多个组,然后在每个组内进行卷积操作,最后将每个组的输出特征图拼接起来作为最终的输出特征图
假设输入特征图的通道数为C,组数为G,每组的通道数为C/G,那么组卷积的操作可以表示为

  1. 将输入特征图分成G组,每组包含C/G个通道。
  2. 对每个组进行卷积操作,得到每组的输出特征图。
  3. 将G个组的输出特征图拼接起来,得到最终的输出特征图。

设计一个具有三明治布局的新块来构建模型:

三明治布局块在FFN层之间应用单个内存绑定的MHSA层;

并应用更多的FFN层来允许不同通道之间的通信,从而提高内存效率

内存绑定的MHSA(多头自注意力)层通过优化数据结构和计算流程,减少了内存使用,提高了计算效率。这种优化可能包括更有效的张量整形操作、减少不必要的数据复制、以及使用更紧凑的数据表示等

级联群体注意力(CGA)

与先前对所有头使用相同特征的自注意力相比,CGA为每个头提供不同的输入分割,并将输出特征级联到各个头。

该模块不仅减少了多头注意力中的计算冗余,而且还通过增加网络深度来提高模型容量。我们通过扩大关键网络组件(例如值投影)的通道宽度来重新分配参数,同时缩小重要性较低的组件(例如FFN中的隐藏维度)

使用Vision Transformers加快速度

内存效率

内存访问开销是影响模型速度的关键因素。Transformer中的许多运算符,例如频繁的整形、逐元素加法和归一化,都是内存效率低下的,需要跨不同内存单元进行耗时的访问。

我们通过减少内存效率低下的层来节省内存访问成本。内存效率低下的操作主要位于MHSA(多头注意力)而不是FFN层。然而,大多数现有的ViT使用相同数量的两层,无法达到最佳效率。

事实证明,适当降低MHSA层利用率可以在提高模型性能的同时提高内存效率。

这篇关于4.18.2 EfficientViT:具有级联组注意力的内存高效Vision Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936699

相关文章

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int