4.18.2 EfficientViT:具有级联组注意力的内存高效Vision Transformer

本文主要是介绍4.18.2 EfficientViT:具有级联组注意力的内存高效Vision Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

现有Transformer模型的速度通常受到内存低效操作的限制,尤其是MHSA(多头自注意力)中的张量整形和逐元素函数。

设计了一种具有三明治布局的新构建块,即在高效FFN(前馈)层之间使用单个内存绑定的MHSA,从而提高内存效率,同时增强通道通信。

注意力图在头部之间具有高度相似性,导致计算冗余。

为了解决这个问题,提出了一个级联的组注意力模块,为注意力头提供完整特征的不同分割。


Transformer模型的速度通常受内存限制。内存访问延迟阻碍了GPU/CPU中计算能力的充分利用,从而对Transformer的运行速度产生严重的负面影响。

内存效率最低的操作是多头自注意力(MHSA)中频繁的张量整形和逐元素函数。通过适当调整MHSA和FFN(前馈网络)层之间的比例,可以在不影响性能的情况下显著减少内存访问时间。

通过向每个头提供不同的特征来显式分解每个头的计算来缓解冗余问题。 

为了提高参数效率,我们使用结构化剪枝来识别最重要的网络组件,并总结模型加速参数重新分配的经验指导。

结构化剪枝是在神经网络已经训练好的情况下,按照一定的剪枝策略来修剪掉一部分神经元或连接,从而减少模型的大小,保持模型的精度,形成一个新的更加简单的模型。

结构化剪枝能够直接减少卷积核的参数量和运算量,减少网络运行时的内存占用,不需要特征运算库即可实现运算加速。

 EfficientViT

  1. MBConv模块使用深度可分离卷积,即每个输入通道只与一个卷积核进行卷积,然后再将结果相加,从而减少了参数数量。
  2. Lighted Multi-scale Self-attention (轻量级多尺度自注意力)

DWConv指的是深度卷积,GConv指的是组卷积。

深度卷积是组卷积的极端情况,即分组数g等于输入通道数cin,也等于输出通道数cout

组卷积常用在轻量型高效网络中,因为它用少量的参数量和运算量就能生成大量的feature
map,而大量的feature map意味着能够编码更多的信息。

组卷积指的是什么:

组卷积是将输入特征图分成多个组,然后在每个组内进行卷积操作,最后将每个组的输出特征图拼接起来作为最终的输出特征图
假设输入特征图的通道数为C,组数为G,每组的通道数为C/G,那么组卷积的操作可以表示为

  1. 将输入特征图分成G组,每组包含C/G个通道。
  2. 对每个组进行卷积操作,得到每组的输出特征图。
  3. 将G个组的输出特征图拼接起来,得到最终的输出特征图。

设计一个具有三明治布局的新块来构建模型:

三明治布局块在FFN层之间应用单个内存绑定的MHSA层;

并应用更多的FFN层来允许不同通道之间的通信,从而提高内存效率

内存绑定的MHSA(多头自注意力)层通过优化数据结构和计算流程,减少了内存使用,提高了计算效率。这种优化可能包括更有效的张量整形操作、减少不必要的数据复制、以及使用更紧凑的数据表示等

级联群体注意力(CGA)

与先前对所有头使用相同特征的自注意力相比,CGA为每个头提供不同的输入分割,并将输出特征级联到各个头。

该模块不仅减少了多头注意力中的计算冗余,而且还通过增加网络深度来提高模型容量。我们通过扩大关键网络组件(例如值投影)的通道宽度来重新分配参数,同时缩小重要性较低的组件(例如FFN中的隐藏维度)

使用Vision Transformers加快速度

内存效率

内存访问开销是影响模型速度的关键因素。Transformer中的许多运算符,例如频繁的整形、逐元素加法和归一化,都是内存效率低下的,需要跨不同内存单元进行耗时的访问。

我们通过减少内存效率低下的层来节省内存访问成本。内存效率低下的操作主要位于MHSA(多头注意力)而不是FFN层。然而,大多数现有的ViT使用相同数量的两层,无法达到最佳效率。

事实证明,适当降低MHSA层利用率可以在提高模型性能的同时提高内存效率。

这篇关于4.18.2 EfficientViT:具有级联组注意力的内存高效Vision Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936699

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom