【论文推导】基于有功阻尼的转速环PI参数整定分析

2024-04-26 03:52

本文主要是介绍【论文推导】基于有功阻尼的转速环PI参数整定分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  在学习电机控制的路上,PMSM的PI电流控制是不可避免的算法之一,其核心在于内环电流环、外环转速环的设置,来保证转速可调且稳定,并且保证较好的动态性能。整个算法仿真在《现代永磁同步电机控制原理及matlab仿真》中已详细给出,但针对转速环中的“有功阻尼”推导转速话PI参数的过程,描述得较为模糊,理解起来比较困难,故本文将基于现有资料给出“基于有功阻尼转速环PI参数整定”的分析。

理论推导

  在《现代永磁同步电机控制原理及matlab仿真》的3.2.1小节中提及了利用有功阻尼整定转速环PI参数的过程,整个过程与典型Ⅱ型系统整定过程相比,简化了部分参数,但同样是基于特定假设条件得到的近似结果。
{ J d ω m d t = T e − T L − B ω m T e = 3 2 P n i q [ i d ( L d − L q ) + φ f ] (1) \left\{ \begin{array}{l} J\frac{{d{\omega _m}}}{{dt}} = {T_e} - {T_L} - B{\omega _m}\\ {T_e} = \frac{3}{2}{P_n}{i_q}\left[ {{i_d}\left( {{L_d} - {L_q}} \right) + {\varphi _f}} \right] \end{array} \right. \tag1 {Jdtdωm=TeTLBωmTe=23Pniq[id(LdLq)+φf](1)
式(1)中表述的是PMSM运动学方程, ω m {{\omega _m}} ωm为机械角速度; T e {T_e} Te为电磁转矩; T L {T_L} TL为负载转矩; B B B为阻尼系数; P n {P_n} Pn为极对数; i q {i_q} iq为Q轴电流; i d {i_d} id为D轴电流; L q {L_q} Lq为Q轴电感; L d {L_d} Ld为D轴电感; φ f {{\varphi _f}} φf为永磁磁链。
  在转速环参数整定时,假定电机处于空载状态( T L = 0 {T_L}=0 TL=0),同时采用 i d = 0 {i_d}=0 id=0控制策略( T e = 3 2 P n φ f i q {T_e} = \frac{3}{2}{P_n}{\varphi _f}{i_q} Te=23Pnφfiq),故而式(1)可变为:
{ J d ω m d t = T e − B ω m T e = 3 2 P n φ f i q (2) \left\{ \begin{array}{l} J\frac{{d{\omega _m}}}{{dt}} = {T_e} - B{\omega _m}\\ {T_e} = \frac{3}{2}{P_n}{\varphi _f}{i_q} \end{array} \right.\tag2 {Jdtdωm=TeBωmTe=23Pnφfiq(2)
  定义有功阻尼,并将 i q {i_q} iq定义为:
i q = i q ′ − B a ω m (3) {i_q} = {i_q}^\prime - {B_a}{\omega _m}\tag3 iq=iqBaωm(3)
联立式(2)-(3)可得:
( s J + 3 2 P n φ f B a + B ) ω m = 3 2 P n φ f i q ′ (4) \left( {sJ + \frac{3}{2}{P_n}{\varphi _f}{B_a} + B} \right){\omega _m} = \frac{3}{2}{P_n}{\varphi _f}{i_q}^\prime \tag4 (sJ+23PnφfBa+B)ωm=23Pnφfiq(4)
B a = β J − B 1.5 P n φ f {B_a} = \frac{{\beta J - B}}{{1.5{P_n}{\varphi _f}}} Ba=1.5PnφfβJB,可得:
ω m = 1.5 P n φ f / J s + β i q ′ (5) {\omega _m} = \frac{{1.5{P_n}{\varphi _f}/J}}{{s + \beta }}{i_q}^\prime \tag5 ωm=s+β1.5Pnφf/Jiq(5)
  式(5)为电机模型,针对该模型设计相应的串联PI控制器,结构框图如下:
在这里插入图片描述

图1 速度环结构图

  由式(5)可得,为了消去开环传函的 − β { - \beta } β出的极点,同时将闭环传函的带宽配置到期望的 β {\beta } β点处,则PI控制器设计为:
i q ∗ = β ( s + β ) s 1.5 P n φ f / J ( ω m ∗ − ω m ) − B a ω m (6) i_q^* = \frac{{\beta \left( {s + \beta } \right)}}{{s1.5{P_n}{\varphi _f}/J}}\left( {\omega _m^* - {\omega _m}} \right) - {B_a}{\omega _m}\tag6 iq=s1.5Pnφf/Jβ(s+β)(ωmωm)Baωm(6)
则此时闭环传函可表述为:
G ( s ) = β s + β (7) G\left( s \right) = \frac{\beta }{{s + \beta }}\tag7 G(s)=s+ββ(7)
故此时PI参数分别为:
{ K p ω = β 1.5 P n φ f / J K i ω = β 2 1.5 P n φ f / J (8) \left\{ \begin{array}{l} {K_{p\omega }} = \frac{\beta }{{1.5{P_n}{\varphi _f}/J}}\\ {K_{i\omega }} = \frac{{{\beta ^2}}}{{1.5{P_n}{\varphi _f}/J}} \end{array} \right.\tag8 {Kpω=1.5Pnφf/JβK=1.5Pnφf/Jβ2(8)

总结

  本文通过查阅部分论文,得出基于有功阻尼的转速环PI参数整定分析过程,解决了一直以来困扰我很久的PI参数推导与书籍不一致的问题,其中需要注意的仅为通过PI控制器将闭环系统带宽设置为理想值。
  由于其中有部分没找到相关文献,还希望同大家一起讨论。

参考文献

  1. 《现代永磁同步电机控制原理及matlab仿真》袁雷
  2. 告别经验调参–电流环PI参数自动整定
  3. Torque-maximizing field-weakening control: design, analysis, and parameter selection
  4. 永磁同步电机PMSM电流环速度环PI参数整定(一)
  5. 基于内模控制的PMSM双闭环调速系统控制器设计与仿真
  6. 工业机器人用永磁同步电机矢量控制关键技术研究

这篇关于【论文推导】基于有功阻尼的转速环PI参数整定分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936641

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java