本文主要是介绍【论文推导】基于有功阻尼的转速环PI参数整定分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
在学习电机控制的路上,PMSM的PI电流控制是不可避免的算法之一,其核心在于内环电流环、外环转速环的设置,来保证转速可调且稳定,并且保证较好的动态性能。整个算法仿真在《现代永磁同步电机控制原理及matlab仿真》中已详细给出,但针对转速环中的“有功阻尼”推导转速话PI参数的过程,描述得较为模糊,理解起来比较困难,故本文将基于现有资料给出“基于有功阻尼转速环PI参数整定”的分析。
理论推导
在《现代永磁同步电机控制原理及matlab仿真》的3.2.1小节中提及了利用有功阻尼整定转速环PI参数的过程,整个过程与典型Ⅱ型系统整定过程相比,简化了部分参数,但同样是基于特定假设条件得到的近似结果。
{ J d ω m d t = T e − T L − B ω m T e = 3 2 P n i q [ i d ( L d − L q ) + φ f ] (1) \left\{ \begin{array}{l} J\frac{{d{\omega _m}}}{{dt}} = {T_e} - {T_L} - B{\omega _m}\\ {T_e} = \frac{3}{2}{P_n}{i_q}\left[ {{i_d}\left( {{L_d} - {L_q}} \right) + {\varphi _f}} \right] \end{array} \right. \tag1 {Jdtdωm=Te−TL−BωmTe=23Pniq[id(Ld−Lq)+φf](1)
式(1)中表述的是PMSM运动学方程, ω m {{\omega _m}} ωm为机械角速度; T e {T_e} Te为电磁转矩; T L {T_L} TL为负载转矩; B B B为阻尼系数; P n {P_n} Pn为极对数; i q {i_q} iq为Q轴电流; i d {i_d} id为D轴电流; L q {L_q} Lq为Q轴电感; L d {L_d} Ld为D轴电感; φ f {{\varphi _f}} φf为永磁磁链。
在转速环参数整定时,假定电机处于空载状态( T L = 0 {T_L}=0 TL=0),同时采用 i d = 0 {i_d}=0 id=0控制策略( T e = 3 2 P n φ f i q {T_e} = \frac{3}{2}{P_n}{\varphi _f}{i_q} Te=23Pnφfiq),故而式(1)可变为:
{ J d ω m d t = T e − B ω m T e = 3 2 P n φ f i q (2) \left\{ \begin{array}{l} J\frac{{d{\omega _m}}}{{dt}} = {T_e} - B{\omega _m}\\ {T_e} = \frac{3}{2}{P_n}{\varphi _f}{i_q} \end{array} \right.\tag2 {Jdtdωm=Te−BωmTe=23Pnφfiq(2)
定义有功阻尼,并将 i q {i_q} iq定义为:
i q = i q ′ − B a ω m (3) {i_q} = {i_q}^\prime - {B_a}{\omega _m}\tag3 iq=iq′−Baωm(3)
联立式(2)-(3)可得:
( s J + 3 2 P n φ f B a + B ) ω m = 3 2 P n φ f i q ′ (4) \left( {sJ + \frac{3}{2}{P_n}{\varphi _f}{B_a} + B} \right){\omega _m} = \frac{3}{2}{P_n}{\varphi _f}{i_q}^\prime \tag4 (sJ+23PnφfBa+B)ωm=23Pnφfiq′(4)
令 B a = β J − B 1.5 P n φ f {B_a} = \frac{{\beta J - B}}{{1.5{P_n}{\varphi _f}}} Ba=1.5PnφfβJ−B,可得:
ω m = 1.5 P n φ f / J s + β i q ′ (5) {\omega _m} = \frac{{1.5{P_n}{\varphi _f}/J}}{{s + \beta }}{i_q}^\prime \tag5 ωm=s+β1.5Pnφf/Jiq′(5)
式(5)为电机模型,针对该模型设计相应的串联PI控制器,结构框图如下:
由式(5)可得,为了消去开环传函的 − β { - \beta } −β出的极点,同时将闭环传函的带宽配置到期望的 β {\beta } β点处,则PI控制器设计为:
i q ∗ = β ( s + β ) s 1.5 P n φ f / J ( ω m ∗ − ω m ) − B a ω m (6) i_q^* = \frac{{\beta \left( {s + \beta } \right)}}{{s1.5{P_n}{\varphi _f}/J}}\left( {\omega _m^* - {\omega _m}} \right) - {B_a}{\omega _m}\tag6 iq∗=s1.5Pnφf/Jβ(s+β)(ωm∗−ωm)−Baωm(6)
则此时闭环传函可表述为:
G ( s ) = β s + β (7) G\left( s \right) = \frac{\beta }{{s + \beta }}\tag7 G(s)=s+ββ(7)
故此时PI参数分别为:
{ K p ω = β 1.5 P n φ f / J K i ω = β 2 1.5 P n φ f / J (8) \left\{ \begin{array}{l} {K_{p\omega }} = \frac{\beta }{{1.5{P_n}{\varphi _f}/J}}\\ {K_{i\omega }} = \frac{{{\beta ^2}}}{{1.5{P_n}{\varphi _f}/J}} \end{array} \right.\tag8 {Kpω=1.5Pnφf/JβKiω=1.5Pnφf/Jβ2(8)
总结
本文通过查阅部分论文,得出基于有功阻尼的转速环PI参数整定分析过程,解决了一直以来困扰我很久的PI参数推导与书籍不一致的问题,其中需要注意的仅为通过PI控制器将闭环系统带宽设置为理想值。
由于其中有部分没找到相关文献,还希望同大家一起讨论。
参考文献
- 《现代永磁同步电机控制原理及matlab仿真》袁雷
- 告别经验调参–电流环PI参数自动整定
- Torque-maximizing field-weakening control: design, analysis, and parameter selection
- 永磁同步电机PMSM电流环速度环PI参数整定(一)
- 基于内模控制的PMSM双闭环调速系统控制器设计与仿真
- 工业机器人用永磁同步电机矢量控制关键技术研究
这篇关于【论文推导】基于有功阻尼的转速环PI参数整定分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!