【论文推导】基于有功阻尼的转速环PI参数整定分析

2024-04-26 03:52

本文主要是介绍【论文推导】基于有功阻尼的转速环PI参数整定分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

  在学习电机控制的路上,PMSM的PI电流控制是不可避免的算法之一,其核心在于内环电流环、外环转速环的设置,来保证转速可调且稳定,并且保证较好的动态性能。整个算法仿真在《现代永磁同步电机控制原理及matlab仿真》中已详细给出,但针对转速环中的“有功阻尼”推导转速话PI参数的过程,描述得较为模糊,理解起来比较困难,故本文将基于现有资料给出“基于有功阻尼转速环PI参数整定”的分析。

理论推导

  在《现代永磁同步电机控制原理及matlab仿真》的3.2.1小节中提及了利用有功阻尼整定转速环PI参数的过程,整个过程与典型Ⅱ型系统整定过程相比,简化了部分参数,但同样是基于特定假设条件得到的近似结果。
{ J d ω m d t = T e − T L − B ω m T e = 3 2 P n i q [ i d ( L d − L q ) + φ f ] (1) \left\{ \begin{array}{l} J\frac{{d{\omega _m}}}{{dt}} = {T_e} - {T_L} - B{\omega _m}\\ {T_e} = \frac{3}{2}{P_n}{i_q}\left[ {{i_d}\left( {{L_d} - {L_q}} \right) + {\varphi _f}} \right] \end{array} \right. \tag1 {Jdtdωm=TeTLBωmTe=23Pniq[id(LdLq)+φf](1)
式(1)中表述的是PMSM运动学方程, ω m {{\omega _m}} ωm为机械角速度; T e {T_e} Te为电磁转矩; T L {T_L} TL为负载转矩; B B B为阻尼系数; P n {P_n} Pn为极对数; i q {i_q} iq为Q轴电流; i d {i_d} id为D轴电流; L q {L_q} Lq为Q轴电感; L d {L_d} Ld为D轴电感; φ f {{\varphi _f}} φf为永磁磁链。
  在转速环参数整定时,假定电机处于空载状态( T L = 0 {T_L}=0 TL=0),同时采用 i d = 0 {i_d}=0 id=0控制策略( T e = 3 2 P n φ f i q {T_e} = \frac{3}{2}{P_n}{\varphi _f}{i_q} Te=23Pnφfiq),故而式(1)可变为:
{ J d ω m d t = T e − B ω m T e = 3 2 P n φ f i q (2) \left\{ \begin{array}{l} J\frac{{d{\omega _m}}}{{dt}} = {T_e} - B{\omega _m}\\ {T_e} = \frac{3}{2}{P_n}{\varphi _f}{i_q} \end{array} \right.\tag2 {Jdtdωm=TeBωmTe=23Pnφfiq(2)
  定义有功阻尼,并将 i q {i_q} iq定义为:
i q = i q ′ − B a ω m (3) {i_q} = {i_q}^\prime - {B_a}{\omega _m}\tag3 iq=iqBaωm(3)
联立式(2)-(3)可得:
( s J + 3 2 P n φ f B a + B ) ω m = 3 2 P n φ f i q ′ (4) \left( {sJ + \frac{3}{2}{P_n}{\varphi _f}{B_a} + B} \right){\omega _m} = \frac{3}{2}{P_n}{\varphi _f}{i_q}^\prime \tag4 (sJ+23PnφfBa+B)ωm=23Pnφfiq(4)
B a = β J − B 1.5 P n φ f {B_a} = \frac{{\beta J - B}}{{1.5{P_n}{\varphi _f}}} Ba=1.5PnφfβJB,可得:
ω m = 1.5 P n φ f / J s + β i q ′ (5) {\omega _m} = \frac{{1.5{P_n}{\varphi _f}/J}}{{s + \beta }}{i_q}^\prime \tag5 ωm=s+β1.5Pnφf/Jiq(5)
  式(5)为电机模型,针对该模型设计相应的串联PI控制器,结构框图如下:
在这里插入图片描述

图1 速度环结构图

  由式(5)可得,为了消去开环传函的 − β { - \beta } β出的极点,同时将闭环传函的带宽配置到期望的 β {\beta } β点处,则PI控制器设计为:
i q ∗ = β ( s + β ) s 1.5 P n φ f / J ( ω m ∗ − ω m ) − B a ω m (6) i_q^* = \frac{{\beta \left( {s + \beta } \right)}}{{s1.5{P_n}{\varphi _f}/J}}\left( {\omega _m^* - {\omega _m}} \right) - {B_a}{\omega _m}\tag6 iq=s1.5Pnφf/Jβ(s+β)(ωmωm)Baωm(6)
则此时闭环传函可表述为:
G ( s ) = β s + β (7) G\left( s \right) = \frac{\beta }{{s + \beta }}\tag7 G(s)=s+ββ(7)
故此时PI参数分别为:
{ K p ω = β 1.5 P n φ f / J K i ω = β 2 1.5 P n φ f / J (8) \left\{ \begin{array}{l} {K_{p\omega }} = \frac{\beta }{{1.5{P_n}{\varphi _f}/J}}\\ {K_{i\omega }} = \frac{{{\beta ^2}}}{{1.5{P_n}{\varphi _f}/J}} \end{array} \right.\tag8 {Kpω=1.5Pnφf/JβK=1.5Pnφf/Jβ2(8)

总结

  本文通过查阅部分论文,得出基于有功阻尼的转速环PI参数整定分析过程,解决了一直以来困扰我很久的PI参数推导与书籍不一致的问题,其中需要注意的仅为通过PI控制器将闭环系统带宽设置为理想值。
  由于其中有部分没找到相关文献,还希望同大家一起讨论。

参考文献

  1. 《现代永磁同步电机控制原理及matlab仿真》袁雷
  2. 告别经验调参–电流环PI参数自动整定
  3. Torque-maximizing field-weakening control: design, analysis, and parameter selection
  4. 永磁同步电机PMSM电流环速度环PI参数整定(一)
  5. 基于内模控制的PMSM双闭环调速系统控制器设计与仿真
  6. 工业机器人用永磁同步电机矢量控制关键技术研究

这篇关于【论文推导】基于有功阻尼的转速环PI参数整定分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936641

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

详解Spring Boot接收参数的19种方式

《详解SpringBoot接收参数的19种方式》SpringBoot提供了多种注解来接收不同类型的参数,本文给大家介绍SpringBoot接收参数的19种方式,感兴趣的朋友跟随小编一起看看吧... 目录SpringBoot接受参数相关@PathVariable注解@RequestHeader注解@Reque

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的