Day51:动态规划 LeedCode 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

本文主要是介绍Day51:动态规划 LeedCode 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

300. 最长递增子序列

中等

相关标签

相关企业

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的

子序列

。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

思路:

动态规划五部曲:

1.dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

3.初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

为什么不仅仅设置dp[0]=1?

因为在之前有比当前nums[i]小的数时,dp[i]才被赋值,如果前面都没比nums[i]小的数,dp[i]就等于初始值,这个初始值应该为1,因为此时以Nums[i]结尾的子串长度为1

if(nums[i]>nums[j])
            dp[i]=Math.max(dp[i],dp[j]+1);

4.确定遍历顺序

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历

5.举例

代码参考:

class Solution {public int lengthOfLIS(int[] nums) {int[] dp=new int[nums.length];//初始化for(int i=0;i<nums.length;i++){dp[i]=1;}for(int i=1;i<nums.length;i++){for(int j=0;j<i;j++){if(nums[i]>nums[j])dp[i]=Math.max(dp[i],dp[j]+1);}}//取最长长度int result=0;for(int i=0;i<dp.length;i++){result=Math.max(result,dp[i]);}return result;}
}

674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

思路:

与上题相比,本题多了一个要求:连续!

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾连续递增的子序列长度为dp[i]

2.确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

3.dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

4.确定遍历顺序

dp[i + 1]依赖dp[i],所以一定是从前向后遍历

5.举例

代码参考:

class Solution {public int findLengthOfLCIS(int[] nums) {int[] dp=new int[nums.length];//初始化for(int i=0;i<nums.length;i++){dp[i]=1;}int result=1;for(int i=1;i<nums.length;i++){if(nums[i]>nums[i-1]){dp[i]=dp[i-1]+1;}result=Math.max(result,dp[i]);}return result;}
}

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

思路:

动态规划五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :以下标i 为结尾的A,和以下标j 为结尾的B,最长重复子数组长度为dp[i][j]。 

为什么用二维数组表示?

因为两个子串重复子串的位置在两个子串中可能不同

2.确定递推公式

当A[i ] 和B[j ]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

3.dp数组如何初始化

dp[i][0] 和dp[0][j]都要初始化

   int result=0;for(int i=0;i<nums1.length;i++){if(nums1[i]==nums2[0]){dp[i][0]=1;}result=Math.max(result,dp[i][0]);}for(int i=0;i<nums2.length;i++){if(nums2[i]==nums1[0]){dp[0][i]=1;}result=Math.max(result,dp[0][i]);}

4.确定遍历顺序

外层for循环遍历A,内层for循环遍历B,互换也行

   for(int i=1;i<nums1.length;i++){for(int j=1;j<nums2.length;j++){if(nums1[i]==nums2[j]){dp[i][j]=dp[i-1][j-1]+1;}result=Math.max(result,dp[i][j]);}}

5.举例

代码参考:

class Solution {public int findLength(int[] nums1, int[] nums2) {int[][] dp=new int[nums1.length][nums2.length];//初始化int result=0;for(int i=0;i<nums1.length;i++){if(nums1[i]==nums2[0]){dp[i][0]=1;}result=Math.max(result,dp[i][0]);}for(int i=0;i<nums2.length;i++){if(nums2[i]==nums1[0]){dp[0][i]=1;}result=Math.max(result,dp[0][i]);}//更新dp数组and resultfor(int i=1;i<nums1.length;i++){for(int j=1;j<nums2.length;j++){if(nums1[i]==nums2[j]){dp[i][j]=dp[i-1][j-1]+1;}result=Math.max(result,dp[i][j]);}}return result;}
}

这篇关于Day51:动态规划 LeedCode 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936586

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu