基于harris角点和RANSAC算法的图像拼接matlab仿真

2024-04-23 22:04

本文主要是介绍基于harris角点和RANSAC算法的图像拼接matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

.......................................................................
I1_harris   = func_harris(img1,3,para_harris,scales);% 使用自定义函数计算 img1 的角点响应
I2_harris   = func_harris(img2,3,para_harris,scales);% 使用自定义函数计算 img2 的角点响应
.........................................................................
% RANSAC 方法参数设定
% RANSAC 迭代次数
Miter = 500;
% 内点距离阈值
lvls  = 0.003;
% 最小内点数量要求
nums  = 10;
% RANSAC
[ransac_points,~]=func_ransac(harris_p1,harris_p2,mpoint,Miter,lvls,nums);% 存储 RANSAC 匹配得到的正确匹配点坐标
Lens         =length(ransac_points);
X1_r=zeros(1,Lens);
Y1_r=zeros(1,Lens);
X2_r=zeros(1,Lens);
Y2_r=zeros(1,Lens);for i=1:Lensp1=ransac_points(i,1);p2=ransac_points(i,2);X1_r(i)=x1(p1);Y1_r(i)=y1(p1);X2_r(i)=x2(p2);Y2_r(i)=y2(p2);
endfigure
subplot(1,2,1);
imshow(img1);
title('RANSAC匹配点')
hold on;
plot(Y1_r,X1_r,'ro');subplot(1,2,2);
imshow(img2);
title('RANSAC匹配点')
hold on;
plot(Y2_r,X2_r,'go');
% 合成一幅图像展示 RANSAC 匹配结果
figure
img_match=[img1,img2];
imshow(img_match);
title('匹配结果')
hold on;
plot(Y1_r,X1_r,'rx','LineWidth',1,'MarkerSize',8);
plot(Y2_r+size(img1,2),X2_r,'gx','LineWidth',1,'MarkerSize',8);Xm1_ransac=X1_r; 
Ym1_ransac=Y1_r;
match1=zeros(Lens,2);
match1(:,1)=Xm1_ransac; 
match1(:,2)=Ym1_ransac;Xm2_ransac=X2_r;
Ym2_ransac=Y2_r+size(img1,2);
match2=zeros(Lens,2);
match2(:,1)=Xm2_ransac; 
match2(:,2)=Ym2_ransac;
% 绘制匹配线段连接匹配点
for i=1:Lenshold on;plot([match1(i,2) match2(i,2)], [match1(i,1) match2(i,1)],'LineWidth',1)
end
% 计算 RANSAC 方法得到的仿射变换矩阵
H_ransac = func_affine(X2_r,Y2_r,X1_r,Y1_r);%生成一张新的全景图
[I1_ransac,I2_ransac]=func_trans(img1,img2,H_ransac);figure
I_ransac= I1_ransac+I2_ransac ;
imshow(I_ransac);
title('RANSAC拼接结果')
128

4.算法理论概述

       Harris角点检测是一种局部特征检测方法,它寻找图像中具有显著局部曲率变化的位置,即边缘转折点或角点。主要通过计算图像窗口内的自相关矩阵M,并对其特征值进行评估。Harris响应函数H由自相关矩阵M的两个主特征值 λ1​ 和λ2​ 计算得到:

当H值较大时,窗口内像素的变化足够大,表明可能存在角点。

       在图像拼接过程中,RANSAC用于在两幅图像的重叠区域找到正确的对应点对,即使数据中存在大量噪声和异常点。

1.随机选择一组候选点对作为基础模型(通常是仿射或透视变换模型),计算此模型参数。

2.应用模型参数A预测所有剩余点对是否符合模型,统计一致样本数。

3.重复步骤1和2一定次数(迭代次数T),选取一致样本数最多的模型作为最优模型。

4.设定阈值(如变换残差阈值t),确定最终的内点集合(即那些变换误差小于阈值的所有点对)。

5.使用内点集合重新估计变换参数,以提高精度。

综上所述,图像拼接流程:

  1. 在每幅图像中检测Harris角点,并提取特征描述符。
  2. 利用匹配算法(如SIFT、SURF等)在重叠区域找到对应的角点对。
  3. 应用RANSAC算法找出最优变换模型。
  4. 根据最优变换模型对一幅图像进行几何校正,使两幅图像的重叠部分对齐。
  5. 最后,对齐后的图像通过融合算法(如加权平均、高斯金字塔融合等)拼接成全景图像。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于harris角点和RANSAC算法的图像拼接matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930007

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: