本文主要是介绍Golang中拼接字符串的6种方式性能对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧...
golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去。主要有以下几种拼接方式
拼接方式介绍
1.使用string自带的运算符+
ans = ans + s
2. 使用格式化输出fmt.Sprintf
ans = fmt.Sprintf("%s%s", ans, s)
3. 使用strings的join函数
一般适用于将字符串数组转化为特定间隔符的字符串的情况
ans=strings.join(strs,",")
4. 使用strings.Builder
builder := strings.Builder{} builder.WriteString(s) return builder.String()
5. 使用bytes.Buffer
buffer := new(bytes.Buffer) buffer.WriteString(s) return buffer.String()
6. 使用[]byte,并且提前设置容量
ans := make([]byte, php0, len(s)*n) ans = append(ans, s...)
性能对比
先写一个随机生成长度为n的字符串的函数
func getRandomString(n int) string {
var tmp = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
ans := make([]uint8, 0, n)
for i := 0; i < n; i++ {
ans = append(ans, tmp[rand.Intn(len(tmp))])
}
return string(jsans)
}
接下来分别写出上述拼接方式的实现,假设每次都拼接n次字符串s后返回。
1.使用string自带的运算符+
循环n次,每次都令答案字符串ans+源字符串s
func plusOperatorJoin(n int, s string) string { var ans string for i := 0; i < n; i++ { javascript ans = ans + s } return ans }
2. 使用格式化输出fmt.Sprintf
循环n次,使用fmt.Sprintf达到拼接的目的
func sprintfJoin(n int, s string) string { var ans string for i := 0; i < n; i++ { ans = fmt.Sprintf("%s%s", ans, s) } return ans }
3. 使用strings的join函数
拼接同一个字符串的话不适合用join函数,所以跳过这种方式
4. 使用strings.Builder
初始化strings.Builder,循环n次,每次调用WriteString方法
func stringBuilderJoin(n int, s string) string { builder := strings.Builder{} for i := 0; i < n; i++ { builder.WriteString(s) } return builder.String() }
5. 使用bytes.Buffer
初始化bytes.Buffer,循环n次,每次调用WriteString方法
func bytesBufferJoin(n int, s string) string { buffer := new(bytes.Buffer) for i := 0; i < n; i++ { buffer.WriteString(s) } return buffer.String() }
6. 使用[]byte,并且提前设置容量
定义ans为byte数组,并提前设置容量为len(s)∗n
func bytesJoin(n int, s string) string { ans := make([]byte, 0, len(s)*n) for i := 0; i < n; i++ { ans = append(ans, s...) } return string(ans) }
测试代码
先随机生成一个长度为10的字符串,然后拼接10000次。
package high_strings import "testing" func benchmark(b *testing.B, f func(int, string) string) { var str = getRandomString(10) for i := 0; i < b.N; i++ { f(10000, str) } } func BenchmarkPlusOperatorJoin(b *testing.B) { benchmark(b, plusOperatorJoin) } func BenchmarkSprintfJoin(b *testing.B) { benchmark(b, sprintfJoin) } func BenchmarkStringBuilderJoin(b *testing.B) { benchmark(b, stringBuilderJoin) } func BenchmarkBytesBufferJoin(b *testing.B) { benchmark(b, bytesBufferJoin) } func BenchmarkBytesJoin(b *testing.B) { benchmark(b, bytesJoin) }
测试结果
使用[]byte>strings.Buildandroider≥bytes.Buffer>ffmt.Sprintf > +运算符
源码分析
1.使用string自带的运算符+
代码在runtime\string.go里
// concatstrings implements a Go string concatenation x+y+z+... // The operands are passed in the slice a. // If buf != nil, the compiler has determined that the result does not // escape the calling function, so the string data can be stored in buf // if small enough. func concatstrings(buf *tmpBuf, a []string) string { idx := 0 l := 0 count := 0 for i, x := range a { n := len(x) if n == 0 { continue } if l+n < l { throw("string concatenation too long") } l += n count++ idx = i } if count == 0 { return "" } // If there is just one string and either it is not on the stack // or our result does not escape the calling frame (buf != nil), // then we can return that string directly. if count == 1 && (buf != nil || !stringDataOnStack(a[idx])) { return a[idx] } s, b := rawstringtmp(buf, l) for _, x := range a { copy(b, x) b = b[len(x):] } return s }
首先计算拼接后的字符串长度
如果只有一个字符串并且不在栈上就直接返回
如果buf不为空并且buf可以放下这些字符串,就把拼接后的字符串放在buf里,否则在堆上重新申请一块内存
func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) { if buf != nil && l <= len(buf) { b = buf[:l] s = slicebytetostringtmp(&b[0], len(b)) } else { s, b = rawstring(l) } return } // rawstring allocates storage for a new string. The returned // string and byte slice both refer to the same storage. // The storage is not zeroed. Callers should use // b to set the string contents and then drop b. func rawstring(size int) (s string, b []byte) { p := mallocgc(uintptr(size), nil, false) return unsafe.String((*byte)(p), size), unsafe.Slice((*byte)(p), size) }
然后遍历数组,将字符串copy过去
2. 使用strings.Builder
介绍:strings.Builder用于使用Write方法高效地生成字符串,它最大限度地减少了内存复制
拼接过程:builder里有一个byte类型的切片,每次调用WriteString的时候,是直接往该切片里追加字符串。因为切片底层的扩容机制是以倍数申请的,所以对比1而言,2的内存消耗要更少。
**结果返回:**在返回字符串的String方法里,是将buf数组转化为字符串直接返回的。
扩容机制: 想要缓冲区容量增加n个字节,扩容后容量变为2∗len+n
// A Builder is used to efficiently build a string using Write methods. // It minimizes memory copying. The zero value is ready to use. // Do not copy a non-zero Builder. type Builder struct { addr *Builder // of receiver, to detect copies by value buf []byte } // String returns the accumulated string. func (b *Builder) String() string { return unsafe.String(unsafe.SliceData(b.buf), len(b.buf)) } // grow copies the buffer to a new, larger buffer so that there are at least n // bytes of capacity beyond len(b.buf). func (b *Builder) grow(n int) { buf := make([]byte, len(b.buf), 2*cap(b.buf)+n) copy(buf, b.buf) b.buf = buf } // WriteString appends the contents of s to b's buffer. // It returns the length of s and a nil error. func (b *Builder) WriteString(s string) (int, error) { b.copyCheck() b.buf = append(b.buf, s...) return len(s), nil }
3. 使用bytes.Buffer
介绍bytes.Buffer跟strings.Builder的底层都是byte数组,区别在于扩容机制和返回字符串的String方法。
结果返回: 因为bytes.Buffer实际上是一个流式的字节缓冲区,可以向尾部写入数据,也可以读取头部的数据。所以在返回字符串的String方法里,只返回了缓冲区里未读的部分,所以需要重新申请内存来存放返回的结果。内存会比strings.Builder稍慢一些。
扩容机制: 想要缓冲区容量至少增加n个字节,m是未读的长度,c是当前的容量。
优化点在于如果n<=c/2−m,也就是当前容量的一半都大于等于现有的内容(未读的字节数)加上所需要增加的字节数,就复用当前的数组,把未读的内容拷贝到头部去。
We can slide things down instead of allocating a new slice. We only need m+n <= c to slide, but we instead let capacity get twice as large so we don’t spend all our time copying.
我们可以向下滑动,而不是分配一个新的切片。我们只需要m+n<=c来滑动,但我们让容量增加了一倍,这样我们就不会把所有的时间都花在复制上。
否则的话也是2∗len+n的扩张
// A Buffer is a variable-sized buffer of bytes with Read and Write methods. // The zero value for Buffer is an empty buffer ready to use. type Buffer struct { buf []byte // contents are the bytes buf[off : len(buf)] off int // read at &buf[off], write at &buf[len(buf)] lastRead readOp // last read operation, so that Unread* can work correctly. } // String returns the contents of the unread portion of the buffer // as a string. If the Buffer is a nil pointer, it returns "<nil>". // // To build strings more efficiently, see the strings.Builder type. func (b *Buffer) String() string { if b == nil { // Special case, useful in debugging. return "<nil>" } return string(b.buf[b.off:]) } // WriteString appends the contents of s to the buffer, growing the buffer as // needed. The return value n is the length of s; err is always nil. If the // buffer becomes too large, WriteString will panic with ErrTooLarge. func (b *Buffer) WriteString(s string) (n int, err error) { b.lastRead = opInvalid m, ok := b.tryGrowByReslice(len(s)) if !ok { m = b.grow(len(s)) } return copy(b.buf[m:], s), nil } // grow grows the buffer to guarantee space for n moreiLtipMI bytes. // It returns the index where bytes should be written. // If the buffer can't grow it will panic with ErrTooLarge. func (b *Buffer) grow(n int) int { m := b.Len() // If buffer is empty, reset to recover space. if m == 0 && b.off != 0 { b.Reset() } // Try to grow by means of a reslice. if i, ok := b.tryGrowByReslice(n); ok { return i } if b.buf == nil && n <= smallBufferSize { b.buf = make([]byte, n, smallBufferSize) return 0 } c := cap(b.buf) if n <= c/2-m { // We can slide things down instead of allocating a new // slice. We only need m+n <= c to slide, but // we instead let capacity get twice as large so we // don't spend all our time copying. copy(b.buf, b.buf[b.off:]) } else if c > maxInt-c-n { panic(ErrTooLarge) } else { // Add b.off to account for b.buf[:b.off] being sliced off the front. b.buf = growSlice(b.buf[b.off:], b.off+n) } // Restore b.off and len(b.buf). b.off = 0 b.buf = b.buf[:m+n] return m }
参考:GoLang bytes.Buffer基础使用方法详解
到此这篇关于Golang中拼接字符串的6种方式性能对比的文章就介绍到这了,更多相关Go拼接字符串内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!
这篇关于Golang中拼接字符串的6种方式性能对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!